API src

Found 31 results.

Related terms

Elektrochemische Mikrobearbeitung von hochlegierten Stählen

Das Projekt "Elektrochemische Mikrobearbeitung von hochlegierten Stählen" wird/wurde gefördert durch: Arbeitsgemeinschaft Industrieller Forschungsvereinigungen 'Otto-von-Guericke' e.V.. Es wird/wurde ausgeführt durch: DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts.Im Rahmen des Projektes sollte die Anwendbarkeit von wasserfreien Elektrolyten für die elektrochemische Materialbearbeitung von hochlegierten Stählen mit ultrakurzen Spannungspulsen untersucht werden. Dieses Verfahren erlaubt die Strukturierung von Materialien bis in den Nanometerbereich, wobei die Ortsauflösung direkt über die Spannungspulslänge einstellbar ist. Voraussetzung ist jedoch, dass sich das Material elektrochemisch aktiv und homogen, d.h. ohne die Ausbildung einer Deckschicht oder sonstige Hemmnisse auflösen lässt, was bei der Bearbeitung hochlegierter Stähle in wässrigen Elektrolyten meist nicht gegeben ist. Wasserfreie Elektrolyten könnten diese Probleme teilweise vermeiden. Um dies zu eruieren, untersuchten wir repräsentativ das Verhalten verschiedener Eisenwerkstoffe mit unterschiedlicher Gefügestruktur und Passivität (reines Eisen, 1.2767 (0.5% C, 4% Ni, 1.4% Cr), 1.4301 (austenitischer Edelstahl) und 1.2436 (2,15% C, 11% Cr)) in meist Cl-haltigen Elektrolyten auf Basis verschiedener aprotischer und amphiprotischer Lösungsmittel (Methanol, Dimethylsulfoxid (DMSO), Formamid) sowie Ionischen Flüssigkeiten (IL) ((EMIm)Tf2N + (BMIm)Cl/AlCl3) . Es wurden elektrochemische Untersuchungen des Korrosionsverhaltens z.B. mit Zyklovoltammetrie und Bearbeitungsversuche in einer für wasserfreies Arbeiten umgerüsteten Mikrostrukturierungsapparatur durchgeführt. - Reines Eisen ließ sich in den meisten der verwendeten Elektrolyte elektrochemisch auflösen, teilweise verbunden mit erheblicher Korrosion. Ausnahme bildeten alkalische Elektrolyte, z.B. CH3OH+NaOHaq in denen das Eisen vollständig passivierte. - Der hochlegierte Stahl 1.2767 (niedriger Kohlenstoffgehalt und homogene Gefügestruktur) ließ sich in trockenem LiCl/DMSO gut bearbeiten. Zusatz von Wasser oder Säuren führte zu erhöhter Korrosion. In IL bildeten sich Zersetzungsprodukte, die die Bearbeitung störten. - Der austenitische Edelstahl 1.4301, als Beispiel für einen passivierenden Stahl mit homogenem Materialgefüge, war in LiCl/CH3OH bearbeitbar, wenn auch mit geringer Geschwindigkeit. Das bezüglich Dielektrizitätskonstante und Ionenstärke ähnliche LiCl/DMSO war zur Bearbeitung von Edelstahl nicht brauchbar. Zusatz von HCl brachte keine Verbesserung. In chloridhaltiger IL konnte in Edelstahl gebohrt werden, allerdings extrem langsam. - Am schwierigsten war die Bearbeitung des hoch kohlenstoffhaltigen Stahls 1.2436 mit starken Carbidausfällungen und inhomogener Gefügestruktur. In chloridhaltigen Elektrolyten mit DMSO, Formamid oder CH3OH löste sich die Eisenmatrix zwar auf, die Carbidkörner blieben jedoch zurück, so dass eine ungestörte Mikrobearbeitung nicht möglich war. Zusätze sowohl von NaOHaq als auch von HClaq zu LiCl/CH3OH führten zur Erhöhung der Löslichkeit der Carbide, jedoch im Gegenzug auch zur Verlangsamung der Eisenauflösung. (Text gekürzt)

Verfahren zur Gewinnung von Dimethylformamid und Alkoholen aus Rueckstaenden der Oxosynthese

Das Projekt "Verfahren zur Gewinnung von Dimethylformamid und Alkoholen aus Rueckstaenden der Oxosynthese" wird/wurde gefördert durch: Bundesministerium für Forschung und Technologie. Es wird/wurde ausgeführt durch: Ruhrchemie.Bei der Durchfuehrung der Oxosynthese fallen ca. 15 - 20 v.H. hoeher siedende Kondensationsprodukte an, die bisher zum geringen Teil als minderwertiges Rueckstandsoel verbrannt werden. Es soll ein Verfahren entwickelt werden, bei dem die in diesem Abfalloel zu einem hohen Anteil enthaltenen Ameisensaeureester weiter angereichert und als Wertprodukt in Form von Dimethylformamid und Alkoholen gewonnen werden koennen. Zwecks Erweiterung der Anwendungsbreite des Verfahrensprinzips soll in der Technikumsphase auch die Herstellung eines hoeheren Formamids (Di-2 Aethylhexyl-Formamid) geprueft werden.

Verfahren zur Gewinnung von Dimethylformamid und Alkoholen aus Rueckstaenden der Oxosynthese, Verfahren zur Gewinnung von Dimethylformamid und Alkoholen aus Rueckstaenden der Oxosynthese

Das Projekt "Verfahren zur Gewinnung von Dimethylformamid und Alkoholen aus Rueckstaenden der Oxosynthese, Verfahren zur Gewinnung von Dimethylformamid und Alkoholen aus Rueckstaenden der Oxosynthese" wird/wurde gefördert durch: Bundesministerium für Forschung und Technologie. Es wird/wurde ausgeführt durch: Ruhrchemie.Bei der Durchfuehrung der Oxosynthese fallen ca. 15 - 20 v.H. hoeher siedende Kondensationsprodukte an, die bisher zum geringen Teil als minderwertiges Rueckstandsoel verbrannt werden. Es soll ein Verfahren entwickelt werden, bei dem die in diesem Abfalloel zu einem hohen Anteil enthaltenen Ameisensaeureester weiter angereichert und als Wertprodukt in Form von Dimethylformamid und Alkoholen gewonnen werden koennen. Zwecks Erweiterung der Anwendungsbreite des Verfahrensprinzips soll in der Technikumsphase auch die Herstellung eines hoeheren Formamids (Di-2 Aethylhexyl-Formamid) geprueft werden.

Markt für Ameisensäure

Production mix technologyComment of decarboxylative cyclization of adipic acid (RER): decarboxylative cyclization of adipic acid technologyComment of formic acid production, methyl formate route (RER): The worldwide installed capacity for producing formic acid was about 330 000 t/a in 1988. Synthesis of formic acid by hydrolysis of methyl formate is based on a two-stage process: in the first stage, methanol is carbonylated with carbon monoxide; in the second stage, methyl formate is hydrolyzed to formic acid and methanol. The methanol is returned to the first stage. Although the carbonylation of methanol is relatively problem-free and has been carried out industrially for a long time, only recently has the hydrolysis of methyl formate been developed into an economically feasible process. The main problems are associated with work-up of the hydrolysis mixture. Because of the unfavorable position of the equilibrium, reesterification of methanol and formic acid to methyl formate occurs rapidly during the separation of unreacted methyl formate. Problems also arise in the selection of sufficiently corrosion-resistant materials Carbonylation of Methanol In the two processes mentioned, the first stage involves carbonylation of methanol in the liquid phase with carbon monoxide, in the presence of a basic catalyst: imageUrlTagReplacea0ec6e15-92c8-4d44-82bb-84e90e58b171 As a rule, the catalyst is sodium methoxide. Potassium methoxide has also been proposed as a catalyst; it is more soluble in methyl formate and gives a higher reaction rate. Although fairly high pressures were initially preferred, carbonylation is carried out in new plants at lower pressure. Under these conditions, reaction temperature and catalyst concentration must be increased to achieve acceptable conversion. According to published data, ca. 4.5 MPa, 80 °C, and 2.5 wt % sodium methoxide are employed. About 95 % carbon monoxide, but only about 30 % methanol, is converted under these circumstances. Nearly quantitative conversion of methanol to methyl formate can, nevertheless, be achieved by recycling the unreacted methanol. The carbonylation of methanol is an equilibrium reaction. The reaction rate can be raised by increasing the temperature, the carbon monoxide partial pressure, the catalyst concentration, and the interface between gas and liquid. To synthesize methyl formate, gas mixtures with a low proportion of carbon monoxide must first be concentrated. In a side reaction, sodium methoxide reacts with methyl formate to form sodium formate and dimethyl ether, and becomes inactivated. The substances used must be anhydrous; otherwise, sodium formate is precipitated to an increasing extent. Sodium formate is considerably less soluble in methyl formate than in methanol. The risk of encrustation and blockage due to precipitation of sodium formate can be reduced by adding poly(ethylene glycol). The carbon monoxide used must contain only a small amount of carbon dioxide; otherwise, the catalytically inactive carbonate is precipitated. Basic catalysts may reverse the reaction, and methyl formate decomposes into methanol and carbon monoxide. Therefore, undecomposed sodium methoxide in the methyl formate must be neutralized. Hydrolysis of Methyl Formate In the second stage, the methyl formate obtained is hydrolyzed: imageUrlTagReplace2ddc19c0-905f-42c3-b14c-e68332befec9 The equilibrium constant for methyl formate hydrolysis depends on the water: ester ratio. With a molar ratio of 1, the constant is 0.14, but with a water: methyl formate molar ratio of 15, it is 0.24. Because of the unfavorable position of this equilibrium, a large excess of either water or methyl formate must be used to obtain an economically worthwhile methyl formate conversion. If methyl formate and water are used in a molar ratio of 1 : 1, the conversion is only 30 %, but if the molar ratio of water to methyl formate is increased to 5 – 6, the conversion of methyl formate rises to 60 %. However, a dilute aqueous solution of formic acid is obtained this way, and excess water must be removed from the formic acid with the expenditure of as little energy as possible. Another way to overcome the unfavorable position of the equilibrium is to hydrolyze methyl formate in the presence of a tertiary amine, e.g., 1-(n-pentyl)imidazole. The base forms a salt-like compound with formic acid; therefore, the concentration of free formic acid decreases and the hydrolysis equilibrium is shifted in the direction of products. In a subsequent step formic acid can be distilled from the base without decomposition. A two-stage hydrolysis has been suggested, in which a water-soluble formamide is used in the second stage; this forms a salt-like compound with formic acid. It also shifts the equilibrium in the direction of formic acid. To keep undesirable reesterification as low as possible, the time of direct contact between methanol and formic acid must be as short as possible, and separation must be carried out at the lowest possible temperature. Introduction of methyl formate into the lower part of the column in which lower boiling methyl formate and methanol are separated from water and formic acid, has also been suggested. This largely prevents reesterification because of the excess methyl formate present in the critical region of the column. Dehydration of the Hydrolysis Mixture Formic acid is marketed in concentrations exceeding 85 wt %; therefore, dehydration of the hydrolysis mixture is an important step in the production of formic acid from methyl formate. For dehydration, the azeotropic point must be overcome. The concentration of formic acid in the azeotropic mixture increases if distillation is carried out under pressure, but the higher boiling point at high pressure also increases the decomposition rate of formic acid. At the same time, the selection of sufficiently corrosion-resistant materials presents considerable problems. A number of entrainers have been proposed for azeotropic distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html technologyComment of oxidation of butane (RER): The liquid-phase oxidation of hydrocarbons is an important process to produce acetic acid, formic acid or methyl acetate. About 43 kg of formic acid is produced per ton of acetic acid. Unreacted hydrocarbons, volatile neutral constituents, and water are separated first from the oxidation product. Formic acid is separated in the next column; azeotropic distillation is generally used for this purpose. The formic acid contains about 2 wt % acetic acid, 5 wt % water, and 3 wt % benzene. Formic acid with a content of about 98 wt % can be produced by further distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html

Informationen zur chemischen Verbindung: 7-Methoxy-6-(3-morpholin-4-yl-propoxy)-3 H -chinazolin-4-on; [mit ≥ 0,5 % Formamid (EG-Nr. 200-842-0)]

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung 7-Methoxy-6-(3-morpholin-4-yl-propoxy)-3 H -chinazolin-4-on; [mit ≥ 0,5 % Formamid (EG-Nr. 200-842-0)]. Stoffart: Stoffklasse. Inhalt des Regelwerks: Das Globally Harmonised System of Classification and Labelling of Chemicals (GHS) wurde auf UN-Ebene erarbeitet, mit dem Ziel, weltweit einen sicheren Transport zu gewährleisten, die menschliche Gesundheit und Umwelt besser zu schützen. Die Verordnung (EG) Nr. 1272/ 2008 (CLP) legt orientierend an GHS einheitliche Regeln für die Bewertung der Gefährlichkeit von chemischen Stoffen und Gemischen fest (Einstufung). Für physikalische Gefahren, Gesundheits- und Umweltgefahren definiert sie Gefahrenklassen. Eine Gefahrenklasse ist unterteilt in Gefahrenkategorien je nach Schwere der Gefahr. Jeder Gefahrenkategorie sind ein Gefahrensatz, ein Piktogramm sowie ein Signalwort zugeordnet. Aufgrund dieser Einstufungen werden in der CLP-Verordnung verbindliche Kennzeichnungen auf Verpackungen wie Piktogramme und Gefahrenhinweise vorgeschrieben. Die Abverkaufsfrist für Gemische, die bereits vor dem 1.06.2015 verpackt wurden und noch nach alter Einstufung (R-Sätze) gekennzeichnet sind, lief als letzte Übergangsfrist am 01.06.2017 ab. Hersteller/ Importeure von Stoffen sind verpflichtet, innerhalb eines Monats nach Inverkehrbringen, ihre Angaben der Europäischen Chemikalienagentur (ECHA) zur Hinterlegung im öffentlich zugänglichen europäischen Einstufungs- und Kennzeichnungsverzeichnis (CL Inventory) zu melden. Die von der ECHA gepflegte Datenbank enthält Informationen zur Einstufung und Kennzeichnung (C&L) von angemeldeten und registrierten Stoffen, die Hersteller und Importeure übermittelt haben, einschließlich einer Liste harmonisierter Einstufungen. Um eine gesundheitliche Notversorgung und vorbeugende Maßnahmen künftig besser abzusichern, gelten ab dem 01.06.2020 für Gemische, die aufgrund ihrer Wirkungen als gefährlich eingestuft sind, einheitliche Informationspflichten in allen Mitgliedsstaaten. Importeure und nachgeschaltete Anwender sind verpflichtet, diese Informationen den dafür autorisierten nationalen Stellen, in Deutschland dem BfR vorzulegen..

Informationen zur chemischen Verbindung: 7-Methoxy-6-(3-morpholin-4-yl-propoxy)-3 H -chinazolin-4-on; [mit < 0,5 % Formamid (EG-Nr. 200-842-0)]

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung 7-Methoxy-6-(3-morpholin-4-yl-propoxy)-3 H -chinazolin-4-on; [mit < 0,5 % Formamid (EG-Nr. 200-842-0)]. Stoffart: Stoffklasse. Inhalt des Regelwerks: Das Globally Harmonised System of Classification and Labelling of Chemicals (GHS) wurde auf UN-Ebene erarbeitet, mit dem Ziel, weltweit einen sicheren Transport zu gewährleisten, die menschliche Gesundheit und Umwelt besser zu schützen. Die Verordnung (EG) Nr. 1272/ 2008 (CLP) legt orientierend an GHS einheitliche Regeln für die Bewertung der Gefährlichkeit von chemischen Stoffen und Gemischen fest (Einstufung). Für physikalische Gefahren, Gesundheits- und Umweltgefahren definiert sie Gefahrenklassen. Eine Gefahrenklasse ist unterteilt in Gefahrenkategorien je nach Schwere der Gefahr. Jeder Gefahrenkategorie sind ein Gefahrensatz, ein Piktogramm sowie ein Signalwort zugeordnet. Aufgrund dieser Einstufungen werden in der CLP-Verordnung verbindliche Kennzeichnungen auf Verpackungen wie Piktogramme und Gefahrenhinweise vorgeschrieben. Die Abverkaufsfrist für Gemische, die bereits vor dem 1.06.2015 verpackt wurden und noch nach alter Einstufung (R-Sätze) gekennzeichnet sind, lief als letzte Übergangsfrist am 01.06.2017 ab. Hersteller/ Importeure von Stoffen sind verpflichtet, innerhalb eines Monats nach Inverkehrbringen, ihre Angaben der Europäischen Chemikalienagentur (ECHA) zur Hinterlegung im öffentlich zugänglichen europäischen Einstufungs- und Kennzeichnungsverzeichnis (CL Inventory) zu melden. Die von der ECHA gepflegte Datenbank enthält Informationen zur Einstufung und Kennzeichnung (C&L) von angemeldeten und registrierten Stoffen, die Hersteller und Importeure übermittelt haben, einschließlich einer Liste harmonisierter Einstufungen. Um eine gesundheitliche Notversorgung und vorbeugende Maßnahmen künftig besser abzusichern, gelten ab dem 01.06.2020 für Gemische, die aufgrund ihrer Wirkungen als gefährlich eingestuft sind, einheitliche Informationspflichten in allen Mitgliedsstaaten. Importeure und nachgeschaltete Anwender sind verpflichtet, diese Informationen den dafür autorisierten nationalen Stellen, in Deutschland dem BfR vorzulegen..

Informationen zur chemischen Verbindung: C,C'-Azodi(formamid)

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung C,C'-Azodi(formamid). Stoffart: Stoffklasse. Inhalt des Regelwerks: Die REACH-Verordnung (zur Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe) sieht einen umfassenden Rechtsrahmen für die Herstellung und Verwendung chemischer Stoffe in Europa vor..

Informationen zur chemischen Verbindung: N , N' -1,6-Hexandiyl-bis( N -(2,2,6,6-tetramethylpiperidin-4-yl)formamid

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung N , N' -1,6-Hexandiyl-bis( N -(2,2,6,6-tetramethylpiperidin-4-yl)formamid. Stoffart: Stoffklasse. Inhalt des Regelwerks: Das Globally Harmonised System of Classification and Labelling of Chemicals (GHS) wurde auf UN-Ebene erarbeitet, mit dem Ziel, weltweit einen sicheren Transport zu gewährleisten, die menschliche Gesundheit und Umwelt besser zu schützen. Die Verordnung (EG) Nr. 1272/ 2008 (CLP) legt orientierend an GHS einheitliche Regeln für die Bewertung der Gefährlichkeit von chemischen Stoffen und Gemischen fest (Einstufung). Für physikalische Gefahren, Gesundheits- und Umweltgefahren definiert sie Gefahrenklassen. Eine Gefahrenklasse ist unterteilt in Gefahrenkategorien je nach Schwere der Gefahr. Jeder Gefahrenkategorie sind ein Gefahrensatz, ein Piktogramm sowie ein Signalwort zugeordnet. Aufgrund dieser Einstufungen werden in der CLP-Verordnung verbindliche Kennzeichnungen auf Verpackungen wie Piktogramme und Gefahrenhinweise vorgeschrieben. Die Abverkaufsfrist für Gemische, die bereits vor dem 1.06.2015 verpackt wurden und noch nach alter Einstufung (R-Sätze) gekennzeichnet sind, lief als letzte Übergangsfrist am 01.06.2017 ab. Hersteller/ Importeure von Stoffen sind verpflichtet, innerhalb eines Monats nach Inverkehrbringen, ihre Angaben der Europäischen Chemikalienagentur (ECHA) zur Hinterlegung im öffentlich zugänglichen europäischen Einstufungs- und Kennzeichnungsverzeichnis (CL Inventory) zu melden. Die von der ECHA gepflegte Datenbank enthält Informationen zur Einstufung und Kennzeichnung (C&L) von angemeldeten und registrierten Stoffen, die Hersteller und Importeure übermittelt haben, einschließlich einer Liste harmonisierter Einstufungen. Um eine gesundheitliche Notversorgung und vorbeugende Maßnahmen künftig besser abzusichern, gelten ab dem 01.06.2020 für Gemische, die aufgrund ihrer Wirkungen als gefährlich eingestuft sind, einheitliche Informationspflichten in allen Mitgliedsstaaten. Importeure und nachgeschaltete Anwender sind verpflichtet, diese Informationen den dafür autorisierten nationalen Stellen, in Deutschland dem BfR vorzulegen..

Informationen zur chemischen Verbindung: C,C'-Azodi(formamid)

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung C,C'-Azodi(formamid). Stoffart: Stoffklasse.

Informationen zur chemischen Verbindung: N,N'-1,6-Hexanediylbis(N-(2,2,6,6-tetramethylpiperidin-4-yl)formamid

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung N,N'-1,6-Hexanediylbis(N-(2,2,6,6-tetramethylpiperidin-4-yl)formamid. Stoffart: Einzelinhaltsstoff. Inhalt des Regelwerks: Das Globally Harmonised System of Classification and Labelling of Chemicals (GHS) wurde auf UN-Ebene erarbeitet, mit dem Ziel, weltweit einen sicheren Transport zu gewährleisten, die menschliche Gesundheit und Umwelt besser zu schützen. Die Verordnung (EG) Nr. 1272/ 2008 (CLP) legt orientierend an GHS einheitliche Regeln für die Bewertung der Gefährlichkeit von chemischen Stoffen und Gemischen fest (Einstufung). Für physikalische Gefahren, Gesundheits- und Umweltgefahren definiert sie Gefahrenklassen. Eine Gefahrenklasse ist unterteilt in Gefahrenkategorien je nach Schwere der Gefahr. Jeder Gefahrenkategorie sind ein Gefahrensatz, ein Piktogramm sowie ein Signalwort zugeordnet. Aufgrund dieser Einstufungen werden in der CLP-Verordnung verbindliche Kennzeichnungen auf Verpackungen wie Piktogramme und Gefahrenhinweise vorgeschrieben. Die Abverkaufsfrist für Gemische, die bereits vor dem 1.06.2015 verpackt wurden und noch nach alter Einstufung (R-Sätze) gekennzeichnet sind, lief als letzte Übergangsfrist am 01.06.2017 ab. Hersteller/ Importeure von Stoffen sind verpflichtet, innerhalb eines Monats nach Inverkehrbringen, ihre Angaben der Europäischen Chemikalienagentur (ECHA) zur Hinterlegung im öffentlich zugänglichen europäischen Einstufungs- und Kennzeichnungsverzeichnis (CL Inventory) zu melden. Die von der ECHA gepflegte Datenbank enthält Informationen zur Einstufung und Kennzeichnung (C&L) von angemeldeten und registrierten Stoffen, die Hersteller und Importeure übermittelt haben, einschließlich einer Liste harmonisierter Einstufungen. Um eine gesundheitliche Notversorgung und vorbeugende Maßnahmen künftig besser abzusichern, gelten ab dem 01.06.2020 für Gemische, die aufgrund ihrer Wirkungen als gefährlich eingestuft sind, einheitliche Informationspflichten in allen Mitgliedsstaaten. Importeure und nachgeschaltete Anwender sind verpflichtet, diese Informationen den dafür autorisierten nationalen Stellen, in Deutschland dem BfR vorzulegen..

1 2 3 4