Das Projekt "Litter decomposition in mixed spruce-beech stands" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Waldbau-Institut durchgeführt. It is the declared aim of many state forest agencies to convert monocultures of Norway spruce (Picea abies), which are wide-spread in central Europe, to mixed stands of spruce and broadleaved trees, which in most cases would be European beech (Fagus sylvatica). Mixed species stands of these species may have a higher degree of ecological stability because they are less susceptible to windthrow and because nutrient cycling is tighter than in pure stands of spruce. Needle litter of Norway spruce is often less decomposable as that of the original forest, which was replaced by the plantations. As a result the forest floor layer tends to accumulate in many spruce monocultures. The build-up of the forest floor to humus forms such as moder and raw humus represents unfavourable biological soil conditions and a partial discoupling of the nutrient cycling. Additional consequences of this process may be soil acidification and podzolisation in pure spruce stands, which may further destabilise ecosystem processes. Introduction of beech, which can provide leaf litter of greater decomposability may reverse these processes and lead to more favourable humus forms that represent greater biological activity. However, it has been shown that the admixture of beech to spruce effectively leads to a reduced forest floor layer only for some soil types. This points to the importance of identifying the soil types and stand conditions for which the introduction of beech into spruce forest can lead to a significant improvement of the humus form and thus nutrient cycling. The proposed work will contribute to this by identifying sites, where admixture of F. sylvatica to P. abies stands will improve litter decomposition and thus the humus form. Specifically the research will examine how a range of environmental and litter quality factors influence the decomposition of beech and spruce litter, how litter quality is influenced by site quality, and what proportions of beech litter of a certain quality may be required to improve spruce needle decomposition.
Das Projekt "Cirrus-LEWIZ : Cirrus clouds in polewared breaking Rossby waves" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock durchgeführt. Aim: - observe cirrus clouds in poleward breaking Rossby waves with LIDAR, - characterised their pathway in the given synoptic situation using analysis data and backward trajectories, - develop a conceptual model for the transport of water vapor in poleward breaking Rossby waves. Activities: - Launching of several field campaigns such as Cirrus-K1, Cirrus-K2 and Cirrus-K3 including radiosonde and LIDAR observations, - Review of Historical LIDAR data. Results: Poleward Rossby wave breaking events have been often observed over the North Atlantic - European region in the upper troposphere in winter time. During a measuring campaign from 13 to 15 February 2006 a special Rossby wave breaking event was investigated with radiosondes and LIDAR observations. The connected horizontal and vertical transport of water vapour in the upper troposphere / lower stratosphere was analysed with backward trajectories. We found that during this poleward Rossby wave breaking event an air mass body has ben formed over central Europe with an extreme low temperature an a very high specific humidity in the tropopause region. The formation is characterised by a strong adiabatic nort-eastward and upward transport of water vapour on the western flank of a stagnation point over Mecklenburg (North German Lowlands). The radiosonde soundings show layers of supersaturated water vapour with respect to ice, but isolated patches of very high cirrus clouds have been clearly identified by LIDAR measurements over Kühlungsborn (54 Grad CN, 11 Grad CE). Based on formed LIDAR measurements from 1997 to 2002 and similar analysis we established the hypothesis that poleward Rossby wave breaking events are connected with north-eastward and upward tropospheric transport of water vapour, forming of supersaturated water vapour over ice and formation of very high cirrus clouds.
Das Projekt "Trees in multi-Use Landscapes in Southeast Asia (TUL-SEA): A Negotiation Support Toolbox for Integrated Natural Resource Management" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Tropische Agrarwissenschaften (Hans-Ruthenberg-Institut), Fachgebiet Pflanzenbau in den Tropen und Subtropen (490e) durchgeführt. Trees use water while storing carbon; tree crops replace natural forest while reducing poverty; market-oriented monocultures compete with risk-averse poly-cultures, trading off income and risk; plantations displace smallholders, trading off local rights and income opportunities; national reforestation programs use public resources, promising an increase in environmental services that may not happen. Trees in all these examples are closely linked to tradeoffs and conflict, exaggerated expectations and strong disappointment. Integrated Natural Resource Management (INRM) requires site-specific understanding of tradeoffs between and among the goods and services that trees in agro-ecosystems can provide. It is thus costly when compared to readily scalable green revolution technologies. Replicable, cost-effective approaches are needed in the hands of local professionals with interdisciplinary skills to help stakeholders sort out positive and negative effects of trees in multi-use landscapes ( agroforestry) on livelihoods, water and (agro) biodiversity, associated rights and rewards, and thus on Millenium Development Goals (reducing poverty - promoting equitable forms of globalisation - building peace). ICRAF in SE Asia has developed a negotiation support approach for reducing conflict in multi-use landscapes. The approach aims to bridge perception gaps between stakeholders (with their local, public/policy and scientific knowledge paradigms), increase recognition and respect for these multiple knowledge systems, provide quantification of tradeoffs between economic and environmental impacts at landscape scale, and allow for joint analysis of plausible scenarios. Building on the achievements of participatory rural appraisal, we can now add quantitative strengths with the toolbox for tradeoff analysis. The TUL-SEA project (NARS, ICRAF and Hohenheim) will in 3 years lead to: Tests of cost-effectiveness of appraisal tools for tradeoff analysis in a wide range of agroforestry contexts in SE Asia represented by 15 INRM case studies; building on ASB (Alternatives to Slash and Burn; http://www.asb.cgiar.org/) benchmark areas with significant positive local impacts on poverty, environment and peace (www.icraf.org/sea/Publications/searchpub.asp?publishid=1290); Enhanced national capacity in trade-off analysis, information-based INRM negotiations and ex ante impact assessments; An integrated toolbox ready for widespread application. The toolbox consists of instruments for rapid appraisal of landscape, tenure conflict, market, hydrology, agrobiodiversity and carbon stocks, and simulation models for scenario analysis of landscape-level impacts of changes in market access or agroforestry technology.
Das Projekt "Potentials and constraints of the link of agriculture and ecological sanitation" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Abwasserwirtschaft und Gewässerschutz B-2 durchgeführt. By 2020, the number of people living in developing countries will grow from 4.9 billion to 6.8 billion. Ninety percent of this increase will be in rapidly expanding cities and towns. More than half the population of Africa and Asia will live in urban areas by 2020. Growth in urban poverty, food insecurity, and malnutrition and a shift in their concentration from rural to urban areas will accompany urbanization. Severe environmental degradation and hygienic problems caused by the lack of infrastructure are additional problems. The linking of urban and peri-urban agriculture and ecological sanitation could play an important role for the solution of the mentioned problems. Agriculture within city limits, socalled urban agriculture, became a survival strategy for many poor families in the last decades. These families would not be able to secure their nutrition without urban agriculture. This form of agriculture can be a vehicle to increase food security and health, to generate economic opportunities for people with low income, and to promote recycling of waste and waste water. The philosophy of ecosan is based on the consequent implementation of the closing the loops approach (Nutrient Cycling). Urine and faeces are regarded as resources rather than waste. If collected separately they could easily used as fertilizer respectively as soil conditioner. The objective of the research is to evaluate the potentials and constraints of the link of urban and peri-urban agriculture and ecological sanitation, in short UPA-Ecosan-Concept. The UPA-Ecosan-Concept enables sustainable resource management, prevention of environmental degradation through urban agriculture, an increase in soil fertility and therefore higher yields. The challenge is to prove this theoretical statement scientifically. It has to be evaluated, if an UPA-Ecosan concept fulfils the requirements of a system, which is safe, easy to maintain, and transferable to local conditions. However, such a system has to be as effective as possible with respect to nutrient recycling, sanitation and public health. A vital part of the studies will be the investigation of the safe reuse of faeces and urine and the social acceptability of re-circulation of human-derived nutrients. The results should lead to a catalogue of appropriate methods and technologies on which a sustainable UPA-Ecosan concept can be based. Such a catalogue is imperative for the development of clear political guidelines, which should allow an effective integration of urban and peri-urban agriculture and ecological sanitation in existing urban economies. As a final result, the catalogue should address the challenge of rapid urbanisation and corresponding growth of food insecurity and sanitation deficits of the urban poor.
Das Projekt "Bestimmung von P Bindungsformen als Basis für die Risikoabschätzung von Bodenerosion und Leaching" wird vom Umweltbundesamt gefördert und von Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Bodenlandschaftsforschung durchgeführt. Input-Output-Bilanzierung von Phosphor in verschiedenen Landnutzungssystemen dabei: Erfassung der P-Vorräte im Boden, der Phytomasse und von Wirtschaftsdüngern. P-Input über die Atmosphäre, P-Output über die Wasserphase. Entwicklung von Bewertungsmethoden im Hinblick auf das Verlagerungspotenzial von P: Bestimmung der P-Sorptionskapazität von Böden, Erstellung eines Phosphor-Index, Erfassung der P-Bindungsformen über sequentielle Extraktion. Dazu liegen erste Ergebnisse aus den Untersuchungen im Rahmen des Projektes Geochemische Untersuchungen zur Verteilung von P, Fe und Al im Oberboden (Waldumbauprojekt Beerenbusch) sowie im Quillowgebiet vor. Anpassung eines dynamischen Modells (OPUS), zur Simulation der P-Dynamik im System Boden-Pflanze für Acker, Grünland und Wald, an die Bedingungen des Untersuchungsgebiets von NME 2020. Ziel ist die Quantifizierung der verschiedenen P-Pools im Boden in Abhängigkeit von der Landnutzung und die Abschätzung eines Gefährdungspotenzials für die P-Verlagerung.
Das Projekt "Coexistence of different functional types of indigenous trees of the Munessa Forest, Ethiopia: Carbon, water and nutrient relations" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Biologie, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Pflanzenphysiologie durchgeführt. Ecophysiological traits (carbon, water and nutrient relations) allowing for the coexistence of different functional types (life-forms) of indigenous trees in Munessa Forest, Ethiopia is proposed. Above and below ground resource acquisition and utilization by Croton macrostachys (facultative deciduous), Podocarpus falcatus (evergreen gymnosperm) and Prunus africana (broad-leafed evergreen) will be investigated as influenced by site conditions and season. In addition to tree growth and canopy characteristics, photosynthesis, respiration and transpiration at different zones of tree crowns will be recorded. Whole-tree transpiration will be followed using the Granier stem-flux system. Partitioning of soil water among the trees will be assessed using 18O/16/O-signatures of xylem sap and of soil water collected from different depths. Seasonal water use of juvenile and adult trees will be compared and the seasonal patterns of fine root biomass production shall be analyzed. Data on nutrient relations, mycorrhizal networks and silvicultural characteristics of the trees, produced by the other collaborating groups will be integrated to explain the coexistence of the three functional types of trees. It is expected that species-specific requirements and strategies of survival and growth of the investigated tree species can be used for an ecologically sound reforestation program of a mixed forest.
Das Projekt "Methods and Tools for Integrated Sustainability Assessment (MATISSE)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. The objective of MATISSE is to achieve a step-wise advance in the science and application of Integrated Sustainability Assessment (ISA) of EU policies. In order to reach this objective the core activity of the MATISSE project is to improve the tool kit available for conducting Integrated Sustainability Assessments, resulting in four main project activities: 1. A common conceptual framework for ISA development, implementation and evaluation will be developed. This will be related to the assessment of the current status of ISA and its pattern of use in relation to different domains and contexts. 2. MATISSE will deliver a future tool portfolio for ISA. It will improve and interlink existing tools and methods for ISA with the focus on quantitative tools. In addition, new methods and tools will be developed that capture the multi-domain, multi-level and multi-actor complexity of ISA. 3. In four case studies the improved and new ISA tools will be applied and tested. The case studies are designed to cover the broad spectrum of domains and contexts of ISA in the EU. The themes are: i) agriculture, forestry and land-use, ii) resource use, waste and dematerialisation, iii) water, and, iv) sustainable environmental technology development. 4. The involvement and engagement of stakeholders and policy makers will be secured throughout all activities of the project. This covers crosscutting capacity-building, communications and outreach tasks. To this purpose, external guidelines for ISA will be developed that will support the future use and application of tools and methods for ISA across a wide range of contexts. The resulting improved tools portfolio and ISA Guidelines will form the primary deliverables of the project. The major focus will be on ISA-modelling tools in relation to ISA-participatory methods, which will be made suitable for use by the European Commission and other actors that seek to apply ISA through a comprehensive dissemination programme. Prime Contractor: Erasmus Universiteit Rotterdam; Rotterdam; Netherlands.
Das Projekt "Global Earth Observation - Benefit Estimation: Now, Next and Emerging (GEO-BENE): Conceptual Models for the Role and Benefits of EO and Modelling" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. Background: We investigate the role of future learning about the climate system (by global earth observation and modelling) and about climate thresholds in timing abatement policies. Learning plays a crucial role when irreversibilities or rigidities and large uncertainties are present in the system as in the case of climate change. For computational reasons most multi-stage models have simplified the learning process to an autonomous, perfect one-time learning. We focus on the implications of sequential, potentially active resolution of uncertainty in a simple multi-stage model with a climate threshold. Thereby, the concept of 'value of information' and 'future value of information' can be extended to the value of different sequential learning processes. Thereby, it is hoped to gain qualitative insights into questions like: How do first period optimal decisions with anticipated sequential learning compare to decisions for one-time learning? What is the benefit from resolving uncertainties over time in terms of improved abatement policy? What would the value of tipping point early warning systems be? How does this value depend on the flexibility in abatement and on other system properties? When is anticipation of learning essential? Method: (Approximate) stochastic dynamic programming. Results: In a first step, the probably simplest sequential decision model possible representing irreversibility, time-lags and a threshold (modified version of the model presented in Maddison(1995)) was used to gain first insights into the questions above. Learning was represented in a simple parametrized form taken from Kolstad (1996) and modified to represent active learning. Besides the sunk-cost - climate-irreversibility trade-off well known from the literature, additional tradeoffs are observed between learning velocity and threshold location and impacts, and between learning velocity and flexibility in abatement. Whether there is a clear correspondence between one-time learning and sequential learning in terms of first period recommendations is yet to be determined.
Das Projekt "Geobiology of modern and ancient endolithic microorganisms within ultramafic rocks on the Mid-Atlantic Ridge" wird vom Umweltbundesamt gefördert und von Universität Bremen, Zentrum für marine Umweltwissenschaften durchgeführt. The major goal of the project is the geobiological description of active and fossil endolithic organisms of an oceanic crust deep biosphere collected from larger pore spaces and glassy crusts of pillow lavas, and solid portions of basaltic and ultramafic rocks from the Mid-Atlantic Ridge. Crucial is also the recognition of biosignatures of an oceanic deep biosphere. Biosignatures are e.g. organic remains/biomarkers, certain (organo-) mineral precipitates, geochemical, and isotopic anomalies. Results will be compared with samples from different localities (e.g. ODP Leg 200). For this purpose, thin sections from biologically fixed basaltic and ultramafic rock samples will be used for a comprehensive, multiphase experimental approach. The active endolithic deep biosphere will be investigated microscopically using histological and petrographic staining techniques, fluorescent in situ hybridization (FISH), further culture independent molecular biological methods (e.g. DGGE), and culturing of certain microorganisms. Lipid biomarker signatures and macromolecular investigations will provide further knowledge on the distribution of microorganisms, their biodiversity, and generally of organic matter. Isotope and geochemical proxies will be used to describe newly formed minerals within fractures and degassed basaltic, and ultramafic rock types (e.g. ?13C, ?18O, ?34S, 87/86Sr, major and minor elements, REE). We anticipate, that the analyses will demonstrate that the inner pore space of degassed basaltic rocks and fractures and ultramafic rocks is a well developed microbial ecosystem which presumably is found everywhere where oceanic crust forms the seafloor. Therefore, microbial-mediated mineralisation processes within oceanic crust pore spaces may have a significant impact on geochemical element budgets. It is possible to distinguish a fossil oceanic deep biosphere via biosignature analyses back to the Precambrian.
Das Projekt "Prevention of salt damage to the built cultural heritage by the use of crystallisation inhibitors (SALTCONTROL)" wird vom Umweltbundesamt gefördert und von Universität Münster, Institut für Mineralogie durchgeführt. The project aims to develop a new method for the prevention of salt damage, based on the use of compounds that inhibit the growth of salt crystals. When inhibitors are applied, salt crystallisation within the pores of stones is prevented, allowing the salts to form as non-disruptive efflorescences along the stone surface. The effects of crystallisation inhibitors will be evaluated in different ways, ranging from atomic scale studies to macro-scale crystallisation tests and site trials, to evaluate the possibilities, limits and risks of their use in this new field of application for these products. The use of these inhibitors as a conservation method in the field of cultural heritage requires a profound understanding of the mechanisms and factors that determine the development of salt damage. Hence, several important aspects of salt formation will be investigated, by experiments with and without added inhibitors: (i) the relationship between porosity, threshold supersaturation and salt damage, (ii) the mechanisms of transport of moisture and ions during drying and crystallisation, and (iii) the influence of environmental conditions, including temperature, relative humidity and air speed. The final outcome of the project is the formulation of a tested reliable procedure for the use of crystallisation inhibitors in conservation. Prime Contractor: Universiteit Gent; Gent; Belgium.
Origin | Count |
---|---|
Bund | 49 |
Type | Count |
---|---|
Förderprogramm | 49 |
License | Count |
---|---|
open | 49 |
Language | Count |
---|---|
Deutsch | 49 |
Englisch | 48 |
Resource type | Count |
---|---|
Keine | 35 |
Webseite | 14 |
Topic | Count |
---|---|
Boden | 46 |
Lebewesen & Lebensräume | 48 |
Luft | 39 |
Mensch & Umwelt | 49 |
Wasser | 46 |
Weitere | 49 |