API src

Found 11256 results.

Related terms

Nitrataustragsgefährdung nach § 7 AVV GeA der Referenzparzellen in NRW Stand 01/2022

Dargestellt wird der „maximal tolerierbare N-Saldo in kg N/(ha*a) zur Einhaltung des Grundwasserschwellenwertes von maximal 50 mg/L im Sickerwasser unterhalb der durchwurzelbaren Bodenzone“ pro Feldblock. Es handelt sich dabei um den Medianwert pro Feldblock aus dem Rechenmodell GROWA+ NRW 2021, berechnet entsprechend der Vorschrift gemäß § 7 AVV GeA und Anlage 3. Das Modellergebnis wurde im Rahmen des Projektes GROWA+ NRW 2021 durch das Forschungszentrum Jülich in einem 100 x 100 m-Raster entsprechend der in Anlage 3 der AVV GeA beschriebenen Methodik berechnet. Ausgehend von den Werten pro Rasterzelle wurden die Medianwerte pro Feldblock ermittelt. Die Medianwert-Berechnung erfolgte durch das LANUV. Der Berechnung liegen folgende Eingangsdaten zu Grunde: • Denitrifikationsbedingungen im Boden entsprechend Bodenkarte 1:50.000 (GD NRW) • nutzbare Feldkapazität entsprechend Bodenkarte 1:50.000 (GD NRW) • Durchwurzelungstiefe entsprechend Bodenkarte 1:50.000 (GD NRW) • Raster (100 x 100 m) der Landnutzung erstellt auf Basis von ATKIS-DLM und INVEKOS 2016/2017 im Rahmen des Projekts GROWA+ NRW 2021 (Thünen-Institut / Landwirtschaftskammer NRW), Stand 2019 • Langjährige mittlere Sickerwasserrate berechnet mit dem Wasserhaushaltsmodell mGROWA (FZ Jülich) pro Rasterzelle 100 x 100 m für die Zeitreihe 1991-2010, Stand 2019 • Aktuellste verfügbare landnutzungsspezifische atmosphärische N-Deposition als Hintergrundwert aus dem PINETI3-Projekt des Umweltbundesamtes, basierend auf der Zeitreihe 2010-2015 Der Datensatz enthält die Feldblöcke gemäß Feldblockstatistik NRW 2021 als Polygone (Feature in geodatabase „GLDN-Nitrataustragsgefaehrdung-nach-Par-7-AVV-GeA_EPSG25832_Geodatabase.gdb“ bzw. shape „GLDN-Nitrataustragsgefaehrdung-nach-Par-7-AVV-GeA_EPSG25832“).

Jahressummen 1961-2022 des Sickerwassers aus der Wurzelzone (pw) aus mGROWA in mm, 100 x 100 m-Raster NRW

Download des Datenbestands aus dem Wasserhaushaltsmodell mGROWA (Forschungszentrum Jülich im Auftrag des LANUV) als Referenzdatensatz für das Bundesland Nordrhein-Westfalen im 100 x 100 m-Raster. Hier: Abflusskomponente Sickerwasserrate in Form der Jahressummen 1961-2022 in mm als ASCII-Grid. Stand der Modelldaten: 04/2023, Landnutzungsdaten: Stand 2017. Detaillierte Beschreibung des mGROWA-Modells und der genutzten Eingangsdaten, siehe: LANUV-Fachbericht 110, Teilbericht IIa, link: https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110b.pdf

Jahressummen 1961-2022 des urbanen Direktabflusses (qud) aus mGROWA in mm, 100 x 100 m-Raster NRW

Download des Datenbestands aus dem Wasserhaushaltsmodell mGROWA (Forschungszentrum Jülich im Auftrag des LANUV) als Referenzdatensatz für das Bundesland Nordrhein-Westfalen im 100 x 100 m-Raster. Hier: Abflusskomponente urbaner Direktabfluss in Form der Jahressummen 1961-2022 in mm als ASCII-Grid. Stand der Modelldaten: 04/2023, Landnutzungsdaten: Stand 2017. Detaillierte Beschreibung des mGROWA-Modells und der genutzten Eingangsdaten, siehe: LANUV-Fachbericht 110, Teilbericht IIa, link: https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110b.pdf

Jahressummen 1961-2022 der Netto-Grundwasserneubildung (qrn) aus mGROWA in mm, 100 x 100 m-Raster NRW

Download des Datenbestands aus dem Wasserhaushaltsmodell mGROWA (Forschungszentrum Jülich im Auftrag des LANUV) als Referenzdatensatz für das Bundesland Nordrhein-Westfalen im 100 x 100 m-Raster. Hier: Abflusskomponente Grundwasserneubildung in Form der Jahressummen 1961-2022 in mm als ASCII-Grid. Stand der Modelldaten: 04/2023, Landnutzungsdaten: Stand 2017. Detaillierte Beschreibung des mGROWA-Modells und der genutzten Eingangsdaten, siehe: LANUV-Fachbericht 110, Teilbericht IIa, link: https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110b.pdf

Nitratkonzentration im Sickerwasser 2014-2016 (Modellergebnis), 100 x 100 m-Raster NRW

Bezugszeitraum 2014-2016, berechnet durch Forschungszentrum Jülich (Stand 2018), Die Karte der Nitratkonzentration im Sickerwasser 2014-2016 ist ein im Rahmen des Koope-rationsprojekts GROWA+NRW2021 erstelltes Berechnungsergebnis der Modellkette RAUMIS-mGROWA-DENUZ-WEKU. Grundlage für die enthaltenen Ergebniswerte sind die flächendifferenzierten Werte des verlagerbaren Stickstoffgehalts im Boden, die Denitrifikati-onsbedingungen der Böden, die nutzbare Feldkapazität des effektiven Wurzelraumes auf Basis der Bodeneinheiten der BK50 (Stand 2016) sowie die auf Basis des Wasserhaushalts-modells mGROWA berechnete Sickerwasserrate. Als Zwischenergebnis wurde aus der Si-ckerwasserrate und der nFKWe die Verweilzeit im Boden berechnet. Mit Hilfe des reaktiven Transportmodells DENUZ wurden ausgehend von den flächendifferenzierten Werten des ver-lagerbaren Stickstoffgehalts im Boden, der Denitrifikationsbedingungen der Böden und der Verweilzeit des Sickerwassers im Boden der Nitratabbau im Boden berechnet. Zu dem aus der Differenz aus verlagerbarer N-Menge im Boden und Nitratabbau im Boden berechneten Stickstoffaustrag aus dem Boden werden zusätzlich N-Einträge aus Kleinkläranlagen sowie aus urbanen Quellen addiert. Die so gebildete Summe wurde nachfolgend über die Sicker-wasserrate und entsprechende Faktoren in die Nitratkonzentration im Sickerwasser umge-rechnet. Die in der Karte dargestellten Werte können für das Grundwasser als potentielle Nitrateintrags¬konzentration angesehen werden, sofern im entsprechenden Gebiet Grundwasser neu gebil¬det wird und ein Nitratabbau in den Grundwasserdeckschichten unwahrscheinlich ist. Auf Flä¬chen bzw. in Gebieten mit überwiegendem Direktabflussanteil wird die entsprechende Nitrat¬fracht direkt in die Oberflächengewässer eingetragen. Eine detaillierte Beschreibung der Methodik enthält: LANUV (2021): Kooperationsprojekt GROWA+ NRW 2021 Teil VII - Minderungsbedarf der Stickstoffeinträge zur Erreichung der Ziele für das Grundwasser und für den Meeresschutz. LANUV-Fachbericht 110, Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen 2021. https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110h.pdf

Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Änderung der mittleren jährlichen Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000, Kein-Klimaschutz-Szenario (RCP8.5) (WMS Dienst)

Die Karte zeigt die modellierte Änderung der mittleren jährlichen Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000 in mm/a berechnet mit dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.

Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Änderung der mittleren jährlichen Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000, Kein-Klimaschutz-Szenario (RCP8.5)

Die Karte zeigt die modellierte Änderung der mittleren jährlichen Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000 in mm/a berechnet mit dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.

Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Änderung der mittleren jährlichen Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000, Klimaschutz-Szenario (RCP2.6) (WMS Dienst)

Die Karte zeigt die modellierte Änderung der mittleren jährlichen Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000 in mm/a berechnet mit dem „Klimaschutz“-Szenario (RCP2.6).Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Klimaschutz“-Szenario (RCP2.6) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches deutliche Anstrengungen beim Klimaschutz und niedrigen Emissionen bedeutet. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.

Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Änderung der mittleren jährlichen Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000, Klimaschutz-Szenario (RCP2.6)

Die Karte zeigt die modellierte Änderung der mittleren jährlichen Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 zu 1971-2000 in mm/a berechnet mit dem „Klimaschutz“-Szenario (RCP2.6).Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Klimaschutz“-Szenario (RCP2.6) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches deutliche Anstrengungen beim Klimaschutz und niedrigen Emissionen bedeutet. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.

Hydrogeologische Karte von Niedersachsen 1 : 50 000 – Mittlere jährliche Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100, Kein-Klimaschutz-Szenario (RCP8.5) (WMS Dienst)

Die Karte zeigt die modellierte mittlere jährliche Grundwasserneubildung für den 30-jährigen Zeitraum 2071-2100 in mm/a berechnet mit dem „Kein-Klimaschutz“-Szenario (RCP8.5). Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche Klimaprojektionsdaten genutzt. Die Klimaprojektionsdaten stellen die Ergebnisse eines Ensembles aus verschiedenen Klimamodellen dar (das Niedersächsische Klimaensemble AR5-NI v2.1 siehe Hajati et al. (2022)). Die Daten wurden vom Deutschen Wetterdienst bereitgestellt. Datengrundlage dessen ist das EURO-CORDEX Ensemble (Jacob et al., 2014). Im Rahmen des BMVI-Expertennetzwerks fand durch den DWD eine Herunterskalierung von einem 12,5 km auf ein 5 km Raster statt. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden. Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 500 x 500 m Raster für mGROWA22 herunterskaliert.

1 2 3 4 51124 1125 1126