API src

Found 17252 results.

Related terms

Potentielle natürliche Vegetation (pnV) in Sachsen 1:50 000

Die Daten der "potentiellen natürlichen Vegetation" (pnV) geben Auskunft über den (Schluss)-Zustand der natürlichen Vegetation Sachsens, der unter den gegenwärtigen Standortbedingungen vorherrschen würde, wenn die Landnutzung durch den Menschen ausbliebe. Zur PNV Sachsens liegen Daten für Karten in den Maßstäben 1:50 000, 1:200 000 und 1:300 000 vor. Die pnV 1:50 000 wurde im Rahmen des Forschungs- und Entwicklungsvorhabes "Erstellung einer Karte der Potentiellen Natürlichen Vegetation Sachsens im Maßstab 1:50 000" im Auftrag des Sächsischen Landesamtes für Umwelt und Geologie erhoben und im Rahmen des Forschungs- und Entwicklungsvorhabens "Karte der Potentiellen Natürlichen Vegetation Deutschlands 1:500 000, Teilprojekt Sachsen" im Auftrag des Bundesamtes für Naturschutz weiter vertieft. Der Maßstab 1:200 000 stellt ein Zwischenprodukt dar, das zur Erstellung des Maßstabes 1:500 000 angefertigt wurde.

Flach lagernde Salze in Deutschland

Welche Salzformationen eignen sich zur Speicherung von Wasserstoff oder Druckluft? Im Forschungsprojekt InSpEE-DS entwickelten Wissenschaftler Anforderungen und Kriterien mit denen sich mögliche Standorte auch dann bewerten lassen, wenn sich deren Erkundung noch in einem frühen Stadium befindet und die Kenntnisse zum Aufbau der Salinare gering sind. Wissenschaftler der DEEP.KBB GmbH, Hannover erarbeiten gemeinsam mit ihren Projektpartnern der Bundesanstalt für Geowissenschaften und Rohstoffe und der Leibniz Universität Hannover, Institut für Geotechnik Hannover, Planungsgrundlagen zur Standortauswahl und zur Errichtung von Speicherkavernen in flach lagernden Salzen und Mehrfach- bzw. Doppelsalinaren. Solche Kavernen könnten erneuerbare Energie in Form von Wasserstoff oder Druckluft speichern. Während sich das Vorgängerprojekt InSpEE auf Salzformationen großer Mächtigkeit in Norddeutschland beschränkte, wurden jetzt unterschiedlich alte Salinar-Horizonte in ganz Deutschland untersucht. Zur Potenzialabschätzung wurden Tiefenlinienkarten des Top und der Basis sowie Mächtigkeitskarten der jeweils betrachteten stratigraphischen Einheit und Referenzprofile erarbeitet. Informationen zum Druckluft- und Wasserstoff-Speicherpotential in den einzelnen Bundesländern sind an die identifizierten Flächen mit nutzbarem Potential gekoppelt. Die Daten können über den Webdienst „Informationssystem flach lagernde Salze“ genutzt werden. Der Darstellungsmaßstab hat eine untere Grenze von 1 : 300 000. Die Geodaten sind Produkte eines BMWi-geförderten Forschungsprojektes „InSpEE-DS“ (Laufzeit 2015-2019). Das Akronym steht für „Informationssystem Salz: Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft) – Doppelsalinare und flach lagernde Salzschichten“.

Kohlenstoffspeicher der Vegetation

Kohlenstoffvorräte der oberirdischen Biomasse Berlins pro Block- und Teilblockflächen ohne Gewässer sowie pro Straßenfläche auf Grundlage der Blockkarte 1 : 5.000 (ISU5, Raumbezug Umweltatlas 2015). Die Daten stellen ein Teilergebnis des FE-Vorhabens NatKos der HU Berlin dar, gefördert im Berliner Programm für Nachhaltige Entwicklung (BENE). Datenstand ist Januar 2020.

Wasserstände und Fließgeschwindigkeiten der Jährlichkeit 100 für ausgewählte Gewässer in Freiburg i. Br.

Der Datensatz enthält die - Maximale Wasserstände der Jährlichkeit 100 in Herdern Nord, Herdern Glasbach, Hochdorf, Benzhausen - Maximale Fließgeschwindigkeiten der Jährlichkeit 100 in Herdern Nord, Herdern Glasbach, Hochdorf, Benzhausen Der Datensatz entstammt aus dem Projekt I4C, des Leistungszentrums Nachhaltigkeit, der Universität Freiburg und weiteren Projektpartnern und wird nicht regelmäßig aktualisiert. Es handelt sich um Ergebnisse eines Forschungsprojektes ohne rechtliche oder planerische Überprüfung. Die Berechnung der Daten erfolgte 2023 - eine Aktualisierung ist nicht geplant. Die Daten sind OpenData - Namensnennung: "Professur für Hydrologie, Universität Freiburg". Gebiets-Eingangsdaten (Rasterdaten in einer Auflösung von 2*2 m²): Digitales Geländemodell mit Gebäuden, Landnutzung, Versiegelungsgrad, Bodeneigenschaften (nFK, LK, PWP, ks), Leitfähigkeit Hydrogeologie, Mittlerer Grundwasserflurabstand, Gewässernetz. Ereignis-Gebiets-Eingangsdaten (Rasterdaten in einer Auflösung von 2*2 m²): Für die Szenarien: Bodenfeuchte für verschiedene Unterschreitungswahrscheinlichkeiten im Sommerhalbjahr, Anfangsbetonte Modell-Niederschlags-Summen verschiedener Jährlichkeiten und Dauerstufen. Für das Ereignis: Niederschlag vom 25.06.2016, Bodenfeuchte zu Beginn des Niederschlags vom 25.06.2016. Modellierung: Abflussbildung mit dem Modell RoGeR in 5-Minuten-Auflösung. Hydraulische Modellierung mit auf Basis der 5-Minuten-Oberfllächen-Abflüsse aus RoGeR mit den Modell Ro_Dyn. Ergebnisse (Rasterdaten in einer Auflösung von 2*2 m²): Für die Szenarien: Maximale zu erwartende Wasserstände und Fleißgeschwindigkeiten mit einem statistischen Wiederkehr-Intervall von 100 Jahren für jede2*2 m²-Rasterzelle. Für das Ereignis: Maximale für das Ereignis modellierten Wasserstände und Fleißgeschwindigkeiten für jede2*2 m²-Rasterzelle.

TrilaWatt: Topographie (1996-2014, 2022)

Definitionen: In den Geowissenschaften beschreibt eine Topographie die Erdoberfläche. In aquatischen Systemen wird der Begriff oft synonym zum Begriff “Bathymetrie” für die Höhenlage der Gewässersohle verwendet. Im Forschungsprojekt TrilaWatt bezeichnen topographische Daten die subtidale, intertidale und supratidale Höhenverteilung im Bereich der 12 Seemeilen-Zone des Wattenmeers. Datenerzeugung: Die Basis der Datenerzeugung bilden topographische Modelle aus einer umfangreichen Datenbasis von See- und Landvermessungen verschiedenster Datentypen. Diese werden mit einem datengetriebenem Simulationsmodell über räumlich-zeitliche Interpolationsverfahren zusammengelegt. Als Kompromisse zwischen der ständige morphodynamische Aktivität im Wattenmeer und der deutlich geringeren Messfrequenz werden in TrilaWatt topographische Modelle als Jahrestopographien erstellt. Produkt: Die prototypischen Topographien für die Jahre 1996-2014 (NL) sowie für 2022 (NL und DE) werden im GeoTIFF Format bereitgestellt. Die Dienste sind in dem Kartendienst Trilawatt: Topographie integriert. Für diese Zeiträume wird ein gerastertes topographisches Modell in der 12 Seemeilen Zone des Wattenmeers mit einer gerasterten Auflösung von 10 m in Raum und Zeit zum jeweiligen Gültigkeitszeitraum des 01.07. interpoliert. Die prototypischen Topographien liegen außerhalb des Berichtszeitraums von TrilaWatt und Datenquellenkarten sind nur für 2022 verfügbar. Für weitere Informationen wird auf das BAW-Küstenportal (https://mdi-dienste.baw.de/viewer) verwiesen. English: Topography describes the study of the forms and features of land surfaces. Topographic data in aquatic systems is often also referred to as bathymetry. TrilaWatt topography data merged a large number of observational data to annual topographies using a data-driven interpolation model. Data are distributed in 10m grids as GeoTIFF files within the 12 nautical mile zone of the Wadden Sea's coast line. This service includes prototypic topographies for 1996-2014 (NL) and 2022 (NL und GER). Download: A download is located under references (in German: "Verweise und Downloads").

TrilaWatt: Topographie (WCS)

Definitionen: In den Geowissenschaften beschreibt eine Topographie die Erdoberfläche. In aquatischen Systemen wird der Begriff oft synonym zum Begriff “Bathymetrie” für die Höhenlage der Gewässersohle verwendet. Im Forschungsprojekt TrilaWatt bezeichnen topographische Daten die subtidale, intertidale und supratidale Höhenverteilung im Bereich der 12 Seemeilen-Zone des Wattenmeers. Datenerzeugung: Die Basis der Datenerzeugung bilden topographische Modelle aus einer umfangreichen Datenbasis von See- und Landvermessungen verschiedenster Datentypen. Diese werden mit einem datengetriebenem Simulationsmodell über räumlich-zeitliche Interpolationsverfahren zusammengelegt. Als Kompromisse zwischen der ständige morphodynamische Aktivität im Wattenmeer und der deutlich geringeren Messfrequenz werden in TrilaWatt topographische Modelle als Jahrestopographien erstellt. Produkt: Für den Zeitraum von 2015 bis einschließlich 2021 wird ein gerastertes topographisches Modell in der 12 Seemeilen Zone des Wattenmeers mit einer gerasterten Auflösung von 10 m in Raum und Zeit zum jeweiligen Gültigkeitszeitraum des 01.07. interpoliert. Das Datenprodukt wird im GeoTIFF Format bereitgestellt. Zur Einschätzung der Unschärfe des topographischen Datensatzes werden zu jedem Datenprodukt Datenquellenkarten und Datendichtekarten veröffentlicht. Weiterhin werden prototypische Topographien für die Jahre 1996-2014 (NL) sowie für 2022 (NL und DE) bereitgestellt. Weitere Produkte: Min-Z/Max-Z, Morphologischer Raum und Morphologischer Drive (2015-2021). Zitat für diesen Datensatz (DOI) - Zeitraum 2015-2021: Milbradt, P., Pineda, D. (2024): TrilaWatt: Topographie (2015-2021) [Dataset]. Bundesanstalt für Wasserbau. https://doi.org/10.48437/366eab-3640c8 English: Topography describes the study of the forms and features of land surfaces. Topographic data in aquatic systems is often also referred to as bathymetry. TrilaWatt topography data merged a large number of observational data to annual topographies using a data-driven interpolation model. Data are distributed in 10m grids as GeoTIFF files within the 12 nautical mile zone of the Wadden Sea's coast line. Additional products: Min-Z/Max-Z, Bed Elevation Range and morphological Drive (2015-2021). Download A download is located under references (in German: "Verweise und Downloads").

Überschreitung der Belastungsgrenzen für Eutrophierung

Überschreitung der Belastungsgrenzen für Eutrophierung Nährstoffeinträge (vor allem Stickstoff) aus der Luft belasten Land-Ökosysteme und gefährden die biologische Vielfalt. Zur Bewertung dieser Belastung stellt man ökosystemspezifische Belastungsgrenzen (Critical Loads) den aktuellen Stoffeinträgen aus der Luft gegenüber. Trotz rückläufiger Stickstoffbelastungen in Deutschland besteht weiterhin Handlungsbedarf – vor allem bei den Ammoniak-Emissionen. Situation in Deutschland Im Jahr 2019 (letzte verfügbare Daten) wurden die ökologischen Belastungsgrenzen für ⁠ Eutrophierung ⁠ durch Stickstoff in Deutschland auf 69 % der Flächen empfindlicher Ökosysteme überschritten (siehe Karte „Überschreitung des Critical Load für Eutrophierung durch die Stickstoffeinträge im Jahr 2019“). Die zur Flächenstatistik dieser Überschreitung herangezogenen Ökosystemtypen stammen aus dem CORINE-Landbedeckungsdatensatz von 2012 und bilden vor allem Waldökosysteme ab (ca. 96 %). Besonders drastisch sind die Überschreitungen in Teilen Nordwestdeutschlands. Aufgrund der dort ansässigen Landwirtschaft und intensiv betriebenen Tierhaltung ist der Stickstoffeintrag dort besonders hoch. So sind etwa zwei Drittel der Stickstoffeinträge auf Ammoniakemissionen zurückzuführen. Im Rahmen eines ⁠ UBA ⁠-Vorhabens zur Modellierung der Stickstoffdeposition (PINETI-4, Abschlussbericht in prep.) konnte die Entwicklung der Belastung methodisch konsistent für eine lange Zeitreihe (2000 bis 2019) rückgerechnet werden. Die nationalen Zeitreihendaten zeigen, dass der Anteil der Flächen in Deutschland, auf denen die ökologischen Belastungsgrenzen überschritten wurden, von 84 % im Jahr 2000 auf 69 % im Jahr 2019 zurückging (siehe Abb. „Anteil der Fläche empfindlicher Land-Ökosysteme mit Überschreitung der Belastungsgrenzen für Eutrophierung“). Die Abnahme der Belastungen spiegelt größtenteils den Rückgang der Emissionen durch Luftreinhaltemaßnahmen wider. Karte: Überschreitung des Critical Load für Eutrophierung durch Stickstoffeinträge im Jahr 2019 Quelle: Kranenburg et al. (2024) Flächenanteil empfindlicher Land-Ökosysteme mit Überschreitung der Belastungsgrenzen Eutrophierung Quelle: Kranenburg et al. (2024) Diagramm als PDF Diagramm als Excel mit Daten Handlungsbedarf trotz sinkender Stickstoffeinträge Auch in den nächsten Jahren ist wegen der bisher nur unwesentlich abnehmenden Ammoniak-Emissionen – vornehmlich aus der Tierhaltung – mit einer weiträumigen ⁠ Eutrophierung ⁠ naturnaher Ökosysteme zu rechnen. Bei der Minderung von diffusen Stickstoffemissionen in die Luft besteht daher erheblicher Handlungsbedarf. Was sind ökologische Belastungsgrenzen für Eutrophierung? Zur Bewertung der Stoffeinträge werden ökologische Belastungsgrenzen (⁠ Critical Loads ⁠) ermittelt. Nach heutigem Stand des Wissens ist bei deren Einhaltung nicht mit schädlichen Wirkungen auf Struktur und Funktion eines Ökosystems zu rechnen. ⁠ Ökologische Belastungsgrenzen ⁠ sind somit ein Maß für die Empfindlichkeit eines Ökosystems und erlauben eine räumlich differenzierte Gegenüberstellung der Belastbarkeit eines Ökosystems mit aktuellen atmosphärischen Stoffeinträgen. Das dadurch angezeigte Risiko bedeutet nicht, dass in dem betrachteten Jahr tatsächlich schädliche chemische Kennwerte erreicht oder biologische Wirkungen sichtbar sind. Es kann Jahrzehnte dauern, bis Ökosysteme auf Überschreitungen der ökologischen Belastungsgrenzen reagieren. Im Rückschluss ist auch die Erholung des Ökosystems auf vorindustrielles Niveau sehr langwierig, wenn nicht sogar eine irreversible Schädigung des Ökosystems vorliegt. Beide Prozesse sind abhängig von Stoffeintragsraten, meteorologischen und anderen Randbedingungen sowie von chemischen Ökosystemeigenschaften. Daher sind absolute Schadprognosen mittels der Überschreitungen der ökologischen Belastungsgrenzen prinzipiell nicht möglich. Stickstoffdepositionen – ein Treiber des Biodiversitätsverlusts Ein übermäßiger atmosphärischer Eintrag (⁠ Deposition ⁠) von Nährstoffen (vor allem Stickstoff) und deren Anreicherung in Land-Ökosystemen kann auf lange Sicht Ökosysteme stark beeinträchtigen. So kann es zu chronischen Schäden der Ökosystemfunktionen (wie der Primärproduktivität und des Stickstoffkreislaufs) kommen. Auch Veränderungen des Pflanzenwachstums und der Artenzusammensetzung zugunsten stickstoffliebender Arten (⁠ Eutrophierung ⁠) können hervorrufen werden. Außerdem wird die Anfälligkeit vieler Pflanzen gegenüber Frost, ⁠ Dürre ⁠ und Schädlingsbefall erhöht. Atmosphärische Einträge führen zu einer weiträumigen Angleichung der Stickstoffkonzentrationen im Boden auf einem nährstoffreichen Niveau. Die derzeit hohen Stickstoffeinträge in natürliche und naturnahe Land-Ökosysteme sind eine Folge menschlicher Aktivitäten, wie Landwirtschaft oder Verbrennungsprozesse. Diese sind mit hohen Emissionen von chemisch und biologisch wirksamen (reaktiven) Stickstoffverbindungen in die Luft verbunden. Aus der ⁠ Atmosphäre ⁠ werden diese Stickstoffverbindungen über Regen, Schnee, Nebel, Raureif, Gase und trockene Partikel wieder in Land-Ökosysteme eingetragen. Die resultierende Überdüngung ist eine der Hauptursachen für den Rückgang der ⁠ Biodiversität ⁠. Fast die Hälfte der in der Roten Liste für Deutschland aufgeführten Farn- und Blütenpflanzen sind durch Stickstoffeinträge gefährdet. Ziele und Maßnahmen zur Verringerung der Stickstoffeinträge Ein langfristiges Ziel der Europäischen Union (EU) und der Genfer Luftreinhaltekonvention (⁠ UNECE ⁠ Convention on Long-Range Transboundary Air Pollution, CLRTAP) ist die dauerhafte und vollständige Unterschreitung der ökologischen Belastungsgrenzen für ⁠ Eutrophierung ⁠. International wurden deshalb in der sog. neuen ⁠ NEC-Richtlinie ⁠ ( Richtlinie (EU) 2016/2284 vom 14.12.2016) für alle Mitgliedstaaten weitere Minderungen der ⁠ Emission ⁠ von reaktiven Stickstoffverbindungen (NH x , Stickstoffoxide (NO x )) vereinbart, die bis 2030 erreicht werden müssen. Für Deutschland ergeben sich folgende nationale Emissionsminderungsverpflichtungen für Stickstoff für das Jahr 2030 und darüber hinaus im Vergleich zum Basisjahr 2005: Ammoniak (NH 3 ): minus 29 % Stickstoffoxide (NO x ): minus 65 % (siehe auch „Emissionen von Luftschadstoffen“ ). Konkrete nationale Maßnahmen, die zum Erreichen der oben genannten Minderungsverpflichtungen geeignet sind, werden derzeit in einem Nationalen Luftreinhalteprogramm zusammengestellt. Maßnahmen zur Begrenzung der negativen Auswirkungen des reaktiven Stickstoffs, zu denen auch die Eutrophierung von Ökosystemen zählt, sind in der Veröffentlichung des Umweltbundesamtes "Reaktiver Stickstoff in Deutschland" enthalten. Auch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (⁠ BMU ⁠) verfolgt den Ansatz einer nationalen Stickstoffminderungsstrategie . Weitere Informationen bietet auch das Sondergutachten des SRU „Stickstoff: Lösungen für ein drängendes Umweltproblem“ . Hintergrundwissen zur Modellierung von atmosphärischen Stoffeinträgen bietet der Bericht zum Forschungsvorhaben „PINETI-4: Modelling and assessment of acidifying and eutrophying atmospheric deposition to terrestrial ecosystems“.

Digitalisation and Sustainability in the European Union: Steps towards new governance approaches for a twin transition

With the 'twin transition', the European Union aims to combine digitalisation and sustainability in order to achieve the United Nations Sustainable Development Goals. The research project "Digitalisation and sustainability at EU level" examined the opportunities and risks of digitalisation for the implementation of the 2030 Agenda for Sustainable Development. The analysis showed that these two topics are often not integrated. Recommendations were developed for digital circular economy, sufficiency and environmental justice. The research findings suggest that environmental and social justice should be at the forefront of future efforts to promote a sustainable digital future. Veröffentlicht in Texte | 35/2025.

Integrated Assessment of the UN Sustainable Development Goals (SDGs) in Transformation Pathways towards a Resource-Efficient and Greenhouse-Gas-Neutral Germany

The “SDG Pathways” research project used the iSDG model, which was adapted to German data, to develop an assessment approach for modeling the United Nations Sustainable Development Goals (SDGs) in ambitious climate and resource scenarios up to 2050. The results show that an ambitious climate and resource policy improves the SDG targets overall. The study highlights the differences between dynamic and static models and emphasizes that future research projects should include the global implications of the German sustainability transformation. Veröffentlicht in Texte | 28/2025.

Modellierung von SDG-Wechselwirkungen in Deutschland

Im Forschungsprojekt „SDG Pathways“ wurde mit dem iSDG-Modell, das an deutsche Daten angepasst wurde, ein Bewertungsansatz zur Modellierung der Nachhaltigkeitsziele der Vereinten Nationen (⁠ UN ⁠ Susstainable Development Gioals (SDGs) in ambitionierten ⁠ Klima ⁠- und Ressourcenszenarien bis 2050 entwickelt. Die Ergebnisse zeigen, dass eine ambitionierte Klima- und Ressourcenpolitik die SDG-Ziele insgesamt verbessert. Die Studie hebt die Unterschiede zwischen dynamischen und statischen Modellen hervor und betont, dass zukünftige Forschungsprojekte die globalen Implikationen der deutschen Nachhaltigkeittransformation einbeziehen sollten. Veröffentlicht in Texte | 29/2025.

1 2 3 4 51724 1725 1726