Der globale Wandel beeinträchtigt die Biodiversität und Ökosystemfunktionen in Agrarlandschaften durch den Klimawandel und die Nutzungsintensivierung sowie die Degradation von Lebensräumen. Um diesen negativen Effekten entgegenzuwirken, wurden verschiedene Maßnahmen zur Wiederherstellung von Ökosystemen und Landschaften (ELR) entwickelt. Allerdings fehlt es in der Renaturierungsökologie noch an einem tieferen Verständnis für die Schlüsselindikatoren beim Übergang in wiederhergestellte, resiliente Ökosysteme und Landschaften, an gut konzipierten Experimenten, welche Faktoren für den Erfolg oder Misserfolg von ELR-Maßnahmen zeigen, als auch an komplexen Analysen vorhandener Daten. Ziel von AgriRestore ist es die Auswirkungen von temporären und permanenten ELR-Maßnahmen in Agrarlandschaften umfassend zu bewerten. In der extrem trockenen und teilweise sehr strukturarmen Agrarlandschaft Sachsen-Anhalts werden wir entlang eines Landschaftsgradienten in einem innovativen Ansatz Feld- mit Mesokosmos-Experimenten kombinieren und die Fernerkundung für eine räumliche Skalierung der Muster nutzen. Durch Meta-Analysen und Wissensgraphen werden außerdem vorhandene Studien synthetisiert sowie Nutzen, Risiken und Unsicherheiten von ELR-Maßnahmen bewertet. Durch den Vergleich von wiederhergestellten und degradierten Agrarökosystemen werden die Auswirkungen von ELR-Maßnahmen auf die ober- und unterirdische Biodiversität und die damit verbundenen Ökosystemfunktionen (einschließlich Ökosystemleistungen und -fehlleistungen) analysiert. Positive Langzeitwirkungen temporärer ELR-Maßnahmen werden durch die Kombination von Zeitreihen mit multiskaligen Fernerkundungsdaten erforscht. Durch neuartige analytische Ansätze werden die feldbasierten Ergebnisse synthetisiert und die Übertragbarkeit auf größere räumliche Skalen getestet. Mit Fokus auf Synergien wird unsere Forschung einzigartige und umfangreiche Daten zu den Effekten von ELR-Maßnahmen liefern. Darauf aufbauend werden verschiedene Szenarien entwickelt und Schlüsselindikatoren für die erfolgreiche Wiederherstellung von resilienten Agrarökosystemen und Landschaften über räumliche und zeitliche Skalen hinweg abgeleitet. Zur Verstetigung unseres RI wird an der Hochschule Anhalt in Zusammenarbeit mit nationalen und internationalen Forschern ein Exzellenzzentrum für Landschafts- und Habitat-Wiederherstellung (ÉCLAIR) etabliert, welches zukünftig weitere degradierte Ökosysteme in den Fokus nehmen wird. Zur integrativen Ausbildung von Nachwuchswissenschaftlern werden wir ein Graduiertenkolleg einrichten: Young#ÉCLAIR. Durch die Kombination von Fachwissen aus den Bereichen ökologische Wiederherstellung und Biodiversitätsforschung, Fernerkundung und Datenwissenschaft innerhalb von AgriRestore sind wir in der Lage, das theoretische Verständnis für die Wiederherstellung von Ökosystem und Landschaften maßgeblich zu verbessern sowie neue Methoden und Techniken für die Renaturierungsökologie zu entwickeln.
Borealen Wälder speichern fast ein Drittel des weltweiten terrestrischen Kohlenstoffs in Biomasse und Böden. Die Stabilität dieser Kohlenstoffvorräte ist in der jüngsten Zeit intensiv diskutiert worden, denn es wird erwartet, dass Waldstörungen wie etwa Insektenausbrüche, Stürme oder Brände im Klimawandel zunehmen werden. Während für die nordamerikanischen und europäischen borealen Wälder eine solide Wissensbasis über sich verändernde Waldstörungen existiert, gibt es für die russischen borealen Wälder nur wenige Fallstudien. Diese wenigen Fallstudien decken jedoch nur einen sehr kleinen Teil der riesigen Ausdehnung des russischen borealen Waldes ab, was wiederum das Kohlenstoffbudget des russischen borealen Waldes höchst unsicher macht. Im Rahmen des BOFOR-Projekts schlagen wir daher vor, diese Wissenslücke zu schließen, indem wir unser Verständnis der sich veränderte Waldstörungen und deren Einfluss auf den Kohlenstoffhaushalt des russischen borealen Waldes verbessern. Das Projekt verfolgt dabei die folgenden sechs Ziele: (1) Entwicklung eines neuen räumlich expliziten Datensatzes für Waldstörungen für den gesamten russischen borealen Wald unter Verwendung von Erdbeobachtungsdaten. (2) Die Zuordnung von Waldstörungen zu ihren kausalen Verursachern wie Feuer, Wind, Insektenbefall und Holzernte. (3) Quantifizierung der Sensitivität von Störungen in borealen Wäldern gegenüber zunehmenden Klimaextremen im Zuge des Klimawandels. (4) Quantifizierung der Erholungsfunktion nach Störung, mit besonderem Blick auf die Biomasse. (5) Quantifizierung der Sensitivität der Erholungsfunktion gegenüber biotischen, bodenkundlichen und klimatischen Faktoren. (6) Erstellung eines vollständigen Kohlenstoffbudgets für den borealen Wald, einschließlich Störungen und Erholung. Das von uns vorgeschlagene Projekt wird eine wichtige Wissenslücke im globalen Kohlenstoffkreislauf schließen und damit unser Verständnis des Klimaschutzpotenzials der Wälder weltweit erheblich verbessern.
Wildverbiss kann starken Einfluss auf die Entwicklung von Wäldern nehmen, mit gravierenden Konsequenzen für die Umwelt. Während vorhandene Untersuchungen insbesondere naturale Einflüsse von Wildverbiss auf die Zusammensetzung und das Wachstum von Waldbeständen quantifizieren, fehlen umfassende Bewertungen des Einflusses von Wildverbiss auf die Ökosystemleistungen des Waldes. Zur Schließung dieser Kenntnislücken schlagen wir daher drei miteinander verzahnte Forschungsfelder vor: 1) Wir schlagen Optimierungen multipler Kriterien unter Unsicherheit auf der Ebene von Waldbeständen vor, um Benchmark-Waldbestände zu generieren, welche die Stakeholder-Zielsetzungen optimal erfüllen. Eine Erweiterung der bestehenden Optimierungsverfahren schließt die Berücksichtigung von weit in der Zukunft liegenden Ökosystemleistungen und Test der Robustheit der Bereitstellung der Ökosystemleistungen ein. In die Optimierung wollen wir die Holzproduktion, Kohlenstoffspeicherung, Grundwasserspende und Grundwasserqualität (am Beispiel von Nitratkontaminationen), ökonomischer Profit sowie die Biodiversität (am Beispiel von Totholz) einbeziehen. 2) Basierend auf den optimierten Benchmark-Waldbeständen wollen wir dann Simulationsexperimente zum Wildverbiss initiieren. Die Benchmark-Bestände werden dazu in ein Modell zur Abbildung von Waldlandschaften implementiert werden, wo wir diese einem virtuellen Wildverbiss aussetzten. Um den Einfluss von Verbiss zu simulieren, soll ein Agentenbasiertes Modell konzipiert werden. Hierin werden sowohl die jungen Bäume als auch das Wild als autonome Agenten aufgefasst. Die Koppelung der Interaktionen zwischen den Agenten soll in einem Software-Rahmen zur Modellierung von Multi-Agenten Beziehungen erfolgen. Regeln zur Reaktion der Bäumchen auf Verbiss und zur Veränderung des Verhaltens des Wildes in Abhängigkeit vom Waldaufbau werden anhand existierender Literatur abgeleitet. 3) Ergeben sich durch den simulierten Wildverbiss Abweichungen von der optimalen Zusammensetzung und Bewirtschaftung der Benchmark-Bestände, so sollen diese mit Hilfe von Schattenpreisen bewertet werden. Diese Schattenpreise umfassen alle einbezogenen Ökosystemleistungen. Wir erwarten, dass dieses Forschungsprojekt eine umfassende Bewertung des Einflusses von Wildverbiss auf die Umwelt ermöglicht.
Unterschiedliche Baumarten beeinflussen die Humusauflage von Waldböden hinsichtlich des Umsatz von Streueintrag und Zersetzungsraten. Die Stärke der Humusauflage nimmt zum Beispiel von Ahorn über Buche zur Fichte zu (Vesterdal et al. 2008). Diese drei Baumarten stehen im Zentrum der vorgeschlagenen Forschergruppe ‚FOREST FLOOR: Functioning, Dynamics, and Vulnerability in a Changing World‘. Die Dynamik der Humusauflagen wird über den Eintrag und der Qualität von Laubstreu und sowie über die Rhizodeposition gesteuert, zu der Wurzelexsudate, abgestoßene Wurzelzellen und die Absonderung der Mucilage gehören. Diese stellen wichtige Kohlenstoff- bzw. Nährstoffquellen für Pilze und Mikroorganismen der Rhizosphäre dar. Etwa 30 % der durch die Photosynthese synthetisierten Kohlenhydrate werden unterirdisch in die Rhizosphäre verlagert, d.h. zu den Baumwurzeln und ihren symbiotischen Mykorrhizapilzen und mikrobiellen Gemeinschaften. Zudem zeigen verschiedene Baumarten unterschiedliche Nährstoffnutzungsstrategien in Anpassung an die Nährstoffverfügbarkeit des Standorts, die sich in Unterschieden der Nährstoffspeicherung und Nährstoffaufnahmerate und Streuqualität wiederspiegeln. In dem vorliegenden Forschungsantrag P9 untersuchen wir die Hypothese, dass die Nährstoffnutzungsstrategien von Waldbäumen und insbesondere die C-Zusammensetzung der Wurzelexsudate einen starken Einfluss auf die Mykorrhiza-, Saprophyten- und mikrobielle Gemeinschaft haben, die sich folglich auf die Nährstoffverfügbarkeit und den Umsatz der Humusauflage auswirken. Ein zentrales Ziel ist die Erforschung der Zusammenhänge, wie und in welchem Ausmaß die Kohlenstoff Zusammensetzung der Wurzel Exsudate - d.h. das Verhältnis von Zuckern und organischen Säuren in den Exsudaten - den Umsatz der Humusauflage beeinflusst, indem sie die mikrobielle und pilzliche Zusammensetzung und in der Folge die Zersetzung von Organischer Materie des Bodens und Streu verändert. Das vorliegende Forschungsvorhaben wird für die Forschergruppe Informationen über die arten- und standortspezifische Blatt- und Streuqualität, die unterschiedlichen Strategien der Nährstoffnutzung und die Gehalte von Zuckern und organischen Säuren in den Wurzel Exsudaten von Bäumen erheben. Darüber hinaus wird die von den Bäumen vermittelte laterale Verteilung von Nährstoffen aus der Blattstreu in einem gemeinsamen 15N Markierungsexperiment untersucht (P2). Die Ergebnisse werden mit Informationen der mikrobiellen Gemeinschaft (P7) und den unterschiedlichen Mykorrhizatypen der Baumarten (P8) verknüpft und mit den Nährstoffaufnahmeraten in Abhängigkeit von der Nährstoffverfügbarkeit an den unterschiedlichen Standorten (P4) analysiert.
Ein erheblicher Teil des Kohlenstoffs im Tundra-Taiga-Ökoton (engl. ‚Tundra Taiga Ecotone‘, TTE) wird als oberirdische Biomasse (engl. ‚Above-Ground Biomass‘, AGB) in Bäumen und Sträuchern durch Photosynthese gespeichert, wobei Kohlenstoffdioxid aus der Atmosphäre während der kurzen Wachstumsperiode in hohen Breiten entzogen wird. Dies führt zu geringer Kohlenstoffspeicherung im TTE. Der Klimawandel könnte die Produktivität beeinflussen und Vegetationsmuster verändern. Die Rolle abiotischer Faktoren in der Kohlenstoffspeicherung borealer Wälder ist ungenügend verstanden. Eine Neubewertung der Vegetationsorganisation muss hinsichtlich statischer Modulatoren erfolgen. Topografie, ein wichtiger Faktor für Wasser- und Nährstoffverfügbarkeit, ist ein statischer abiotischer Faktor, der die lokalen Wachstumsbedingungen beeinflusst. Mit steigenden Temperaturen wird erwartet, dass Niederschlag intensiver und häufiger wird, was zu Wasserstau oder Nährstoffauswaschung an bestimmten topografischen Positionen führen kann und den Rückgang bestimmter Baumarten zur Folge haben könnte. Daher könnte der Klimawandel lokale Reaktionen auf die topografische Position verändern und Wechselwirkungen mit Wetterbedingungen beeinflussen. Die Topografie könnte die Auswirkungen des Klimawandels mildern und anpassungsfähigen Arten zugutekommen, während andere unter veränderten Bedingungen leiden. Das Verständnis der Beziehung zwischen Topografie und Biomasseakkumulation ist entscheidend für die Bewertung der zukünftigen Rolle borealer Wälder im globalen Kohlenstoffhaushalt. Das BToBE-Projekt zielt darauf ab, Wissenslücken hinsichtlich des Einflusses der Topografie auf die Biomasseakkumulation im TTE zu schließen und deren Auswirkungen durch Vorwärtssimulation mit einem prozessbasierten Vegetationsmodell zu bewerten. Die zentrale Hypothese ist, dass sich die Reaktionen der Vegetation auf topografische Bedingungen im TTE aufgrund starker globaler Erwärmung verändert haben. Kürzlich wurden drohnenbasiert 3D-Punktwolken gesammelt, die verarbeitet werden, um Waldbiomasse zu ermitteln. Diese hochauflösenden Referenzdaten erfassen den bioklimatischen Gradienten des TTE, wobei die nördliche Baumgrenze in Niederungen mit Permafrost und im gebirgigen Terrain verläuft. Die drohnenbasierten AGB-Daten werden verwendet, um ein AGB-Modell für das großflächige Ableiten (engl. ‚upscaling‘) mit Landsat- und Sentinel-2-Multispektralsensoren zu entwickeln. Das Ziel ist dreistufig: Erstens sollen die Beziehungen zwischen AGB und Topografie mithilfe von verallgemeinerten additiven Modellen aufgeklärt werden; zweitens soll die Stabilität dieser Abhängigkeiten durch Rekonstruktion langfristiger AGB-Daten aus den vergangenen Jahrzehnten untersucht werden. Dies wird für die Verbesserung und Implementierung des Individuen-basierten und räumlich expliziten borealen Waldvegetationsmodells LAVESI genutzt, zur Ableitung von AGB-Trajektorien im TTE in den kommenden Jahrzehnten.
Das übergeordnete Ziel dieses Projekts ist es, die interspezifische Diversität von Ektomykorrhizapilzen (EcM) für die Phosphoraufnahme und Ernährung von Bäumen in Pakquirierenden und P-rezyklierenden Ökosystemen zu untersuchen. Der Fokus wird auf der Buche als einer ektomykorrhizalen Hauptbaumart dieser Ökosysteme liegen. Folgende Punkte sollen adressiert werden:(i) Die Pilzgesellschaften P-akquirierender und -rezyklierender Ökosysteme unterscheiden sich, weil in dem ersten Fall P mit Hilfe organischer Exsudate aus Mineralien gelöst werden muss und im zweiten Fall P mit Hilfe saprophytischer Enzyme aus der organischen Materie freigesetzt werden muss, um pflanzenverfügbar zu sein. Um diese Hypothese zu prüfen, werden Pilze in verschiedenen Bodenkompartimenten und Wurzel-assoziierte Pilze mittels Hochdurchsatzsequenzierung erfasst und funktionalen Gruppen zugeordnet. Die aktive EcM Gesellschaft wird durch Kombination von Morphotyping und ITS Sequenzierung quantifiziert. Die Pilzprofile werden in Relation zu Bodenparametern, mikrobieller Aktivität und sekretierten Phosphatasen und Oxalat-produzierenden EcM Aktivitäten analysiert.(ii) Der zeitliche Verlauf des P Bedarfs und der P Aufnahme in Relation zu Phänologie und saisonalen Veränderungen der EcM Gesellschaft ist nicht bekannt. Durch Applikation von radioaktivem Phosphat zu verschiedenen wichtigen Zeitpunkten wie Blattaustrieb, früher Sommer, Spätsommer, Herbst und Winter soll die Aufnahme und pflanzeninterne Allokation von P bestimmt werden. Dabei wird auch die P-Akquisition der EcM Gesellschaft spezifisch erfasst und ihre enzymatischen Aktivitäten untersucht. Des Weiteren werden Biomasse der Pflanze und Morphologie des Wurzelsystems, Gesamt-P sowie der Einbau von P in freie Mikroben untersucht. Mit Hilfe dieser Daten soll ein Modell für die Aufnahme und Allokation von P in Relation zu ektomykorrhizaler, mikrobieller und pflanzlicher Aktivität entwickelt werden.(iii) Um die Beiträge spezifischer EcM für die P Aufnahme zu erfassen, soll eine neue Methode für zeitlich und räumlich aufgelöste Flussmessungen von radioaktivem P etabliert werden. Nach Installation und Kalibrierung der Messanlage mit Hilfe einfacher Modellpflanzen (Pappel), sollen die Beiträge unterschiedlicher EcM Arten für die P Aufnahme und Translokation an jungen Buchen untersucht werden. Dies Daten sollen zur Verbesserung des obigen Modells genutzt werden. Insgesamt werden diese Untersuchungen einen wichtigen Beitrag zur Rolle der EcM Diversität im P Zyklus unterschiedlich P versorgter Ökosysteme liefern.
Als Reaktion auf fortschreitenden Biodiversitätsverlust, Degradation und Klimawandel ist die Wiederherstellung von Ökosystemen zu einer globalen Priorität geworden. Doch trotz zunehmender internationaler Aufmerksamkeit besteht wenig Wissen zu den ökologischen, sozialen und sozial-ökologischen Folgen von Wiederherstellungsmaßnahmen. Die geplante Forschungsgruppe wird eine sozial-ökologische Systemperspektive anwenden, um Mechanismen die zu unterschiedlichen Ergebnissen bei der Wiederherstellung von Ökosystemen führen, besser zu verstehen. Wir werden einen interdisziplinären, ortsbezogenen Ansatz der sozial-ökologischen Systemforschung verfolgen, der ein tiefes Verständnis einer ausgewählten Landschaft generiert und gleichzeitig wertvolles übertragbares Wissen für die Wiederherstellung degradierter Ökosysteme auf der ganzen Welt erzeugt. Unsere Arbeit wird sich dabei auf Ruanda konzentrieren, das eine weltweit führende Rolle bei der Wiederherstellung von Ökosystemen einnimmt. Das übergeordnete Ziel der Forschungsgruppe ist die Entwicklung eines sozial-ökologischen Systemansatzes zur Wiederherstellung von Ökosystemen. Dazu gliedert sich die Forschungsgruppe in acht miteinander verbundene Teilprojekte, die in vier Cluster organisiert sind. Das ökologische Cluster wird die ökologischen Folgen der Wiederherstellung von Ökosystemen in Bezug auf Biodiversität und Ökosystemfunktion auf Standort- sowie auf Landschaftsebene quantifizieren. Das soziale Cluster zielt darauf ab, Kontext, Mechanismen und Ergebnisse der Wiederherstellung von Ökosystemen für einzelne Menschen und Gemeinschaften zu verstehen, mit besonderem Fokus auf Governance, Umweltgerechtigkeit und sozialem Zusammenhalt. Im sozial-ökologischen Cluster werden wir analysieren, wie die Wiederherstellung von Ökosystemen Mensch-Natur Interaktionen verändert, indem wir Lebensgrundlagen, Ernährungssicherheit und nature’s contributions to people untersuchen. Schließlich werden wir im Integrationscluster erstens ein living lab einrichten, in dem wir ökologische und sozioökonomische Experimente zusammen mit lokalen Interessensgruppen durchführen und zweitens mithilfe von Szenarioplanung alle Erkenntnisse der Forschungsgruppe zusammenführen. Die interdisziplinäre Post-hoc-Analyse der Wiederherstellung von Ökosystemen in Kombination mit partizipativen Experimenten und zukunftsorientierter Szenarioplanung liefert ein umfassendes Verständnis der Vergangenheit, Gegenwart und Zukunft der Wiederherstellung von Ökosystemen im Studiengebiet. Darüber hinaus werden wir allgemeine Einblicke in ökologische, soziale und sozial-ökologische Wiederherstellungsmechanismen gewinnen, die auch auf andere Ökosysteme angewendet werden können. Auf diese Weise trägt die Forschungsgruppe zur Restaurierungswissenschaft und sozial-ökologischen Systemforschung bei, kommt den Wiederherstellungsaktivitäten in Ruanda direkt zugute und schafft Wissen, um die Wiederherstellungspraxis weltweit voranzubringen.
High altitude ecosystems are still widely perceived as natural and anthropogenic transformation is generally considered to be concentrated on lower elevations and late. However, recent studies challenge this view and for quaternary environmental science and prehistory, the question where humans retreated to during the driest intervals of the last 20 ka when lowlands may have become uninhabitable is still demanding. Based on previous own and third-party research and a total of four reconnaissances to the study area as part of the preparation of this research unit, we challenge the initially stated long-held belief. Given the higher humidity of the African mountains archipelago, the afro-alpine environments are a potential glacial refuge not only for plants and animals, but also for humans. Among others, this idea is backed up by the facts that - highland people of Ethiopia are genetically adapted to high altitude hypoxia which indicates their presence at least in parts of the higher areas over evolutionary time scales. - surface scatters of stone artefacts showing heavy abrasion have been found during the most recent reconnaissance trip between 3,700 and 4,100 m which for the first time likely indicates the presence of stone working people on the Sanetti Plateau. - the mosaic of isolated groves of Erica trimera across the plateau cannot be explained by climatic gradients but indicates a human induced and fire-based shaping of the afro-alpine heathlands. As a consequence, we postulate not a late but early afro-alpine occupation expressed as the 'Mountain Exile Hypothesis'. Hence, the research unit will focus on reconstructing the natural and the anthropogenic history of this afro-alpine environment in space and time and the identification and quantification of the natural and anthropogenic drivers and processes that shaped the ecology evolution of the research area. To tackle the research questions arising from the Mountain Exile Hypothesis and to test the hypothesis itself, a multi-disciplinary and multi-proxy approach which combines established as well as newly developed and complementing methods has been designed which focuses on both the - human side of environmental change (P1 - Archeology and Archeozoology, P2 - Anthrosols and Intensity of Human Occupation) and the - natural side of environmental change (P5 - Paleoclimatology, P6 - Glacial Chronology and P7 - Ground Beetles as a Human-Independent Paleoproxy). The respective investigations are bridged by paleoecological investigations (P4 - Paleoecology) which focus on pollen, spores and macrofossil analyses and discriminate the human and natural signals. To complete the scientific inventory required to address the overall objectives, relevant baseline environmental and ecological information is provided (P3 - Environmental Baseline Assessment) and all datasets are combined as part of a central scientific analysis and synthesis platform, the BalePaleoGIS (C2 - Central Scientific Services).
Stürme waren in den vergangenen 70 Jahren ein wichtiger Bestandteil der Störungsdynamik in Europas Wäldern. Sie verursachten seit 1951 die größte kumulierte Schadholzmenge. Diese Tendenz wird sich voraussichtlich als eine Folge des Klimawandels zukünftig fortsetzen und zu vermehrten Störungen führen, die die Produktivität, Struktur und Zusammensetzung von Wäldern sowie Ökosystemdienstleistungen beeinträchtigen. Die Windwirkung auf Bäume im reliefierten Gelände kann bisher noch nicht vollständig und verallgemeinerbar nachvollzogen und durch Modelle abgebildet werden, weil kaum Informationen zum Windfeld über Wäldern vorliegen. Windmessungen werden dort nur in Ausnahmefällen durchgeführt. Es besteht immer noch eine große Wissenslücke bzgl. der Korrelation von Windlasten und daraus resultierenden Baumreaktionen. Das Projekt „Erfassung des bodennahen Windfeldes und windinduzierter Baumreaktionen in komplexem bewaldetem Gelände mit Luftdruckmessungen (WiCoTrAir)“ zielt darauf ab, zur Schließung dieser Wissenslücke beizutragen, indem kleinräumige Strömungseigenschaften, die über Wäldern auftreten, durch großräumig verteilte, bodennahe Luftdruckmessungen erfasst und quantifiziert werden. Auf der Grundlage der Luftdruckmessungen sollen daraufhin auf Bäume wirkende Windlasten abgeschätzt werden. Das Projekt basiert auf fünf Hypothesen: 1. Durch Luftdruckschwankungen, die über dem Waldboden gemessen werden, können die Windgeschwindigkeit und -richtung über Wäldern in reliefiertem Gelände erfasst und quantifiziert werden. 2. Die gemessenen Luftdruckschwankungen können mit Eigenschaften von Windgeschwindigkeits- und Windrichtungsfeldern über einem großen Gebiet in statistische Zusammenhänge gebracht werden. 3. Die statistischen Zusammenhänge ermöglichen eine generalisierbare Abbildung kleinräumiger Strömungsmuster über reliefiertem, bewaldetem Gelände. 4. Validierte Simulations- und Prädiktionsergebnisse von Windfeldmodellen eignen sich als Prädiktoren für Luftdruckschwankungsmodelle, die Eigenschaften von Windfeldern über Wäldern abbilden. 5. Durch Luftdruckschwankungen kann die effektive Windlast, die auf Bäume in reliefiertem Gelände wirkt, abgeschätzt werden. Das Projekt hat zwei Ziele: 1. Die Ursachen und Muster von Luftdruckschwankungen über dem Waldboden im reliefierten Gelände zu eruieren und durch statistische Modellierung Windfeldeigenschaften über Wäldern abzubilden. 2. Neues Wissen über Luftdruckschwankungen für die Abschätzung von Windlasten, die auf Bäume in reliefiertem Gelände wirken, zu generieren, um zukünftig großräumige Windlastabschätzungen zu ermöglichen. Durch die Zielerreichung wird eine neuartige Methode zur Messung von Strömungseigenschaften über Wäldern eingeführt, die geeignet ist, Windfeldeigenschaften im komplexen Gelände auf großer Fläche kleinräumig und mit Relevanz für Wind-Baum-Interaktionen abzubilden. Die verbesserte Abbildung der Windfeldeigenschaften kann dazu beitragen, Sturmschäden in Wäldern zu minimieren.
In den vergangenen 70 Jahren stellten Stürme die größte Naturgefahr für europäische Wälder dar. Sturmschäden treten auf, wenn Bäume destruktiven Windlasten ausgesetzt sind. Aufgrund ihrer weiträumigen Ausdehnung verursachten Winterstürme die größten Schadholzmengen. Die Bedeutung von Winterstürmen für das Schadholzaufkommen in den europäischen Wäldern hat sich in den letzten 30 Jahren erhöht. Sechs der sieben schwersten Winterstürme traten nach 1990 auf. In der Vergangenheit waren besonders Nadelbaumarten von Schäden durch Winterstürme betroffen, weil sie im Gegensatz zu Laubbaumarten ihre Nadeln ganzjährig behalten. Durch die winterliche Belaubung ist die Übertragung von kinetischer Energie der bodennahen Strömung auf die Baumkronen effizient, weil die angeströmte Kronenfläche sehr groß ist. Aufgrund des derzeit ablaufenden Klimawandels kann davon ausgegangen werden, dass zukünftig neben den Winterstürmen vermehrt konvektive Sturmereignisse auftreten, die ganzjährig zu Sturmschäden an Bäumen und Wäldern führen, insbesondere im Sommer. Der Vorteil der saisonalen Belaubung von Laubbaumarten wird durch das ganzjährige Auftreten von destruktiven konvektiven Sturmereignissen verringert. Sturmereignisse können die Vitalität der verbleibenden Bestände in den betroffenen Regionen verringern und sekundäre biotische Naturgefahren wie Kalamitäten von Borkenkäfern und wirtschaftliche Verluste induzieren. Sturmschäden beeinträchtigen Ökosystemdienstleistungen wie die Holzproduktion, die Erholungsfunktion, Wasser- und Erosionsschutz und die CO2-Senkenleistung. Durch katastrophale Stürme kann die CO2-Senkenleistung von Wäldern bei einer sehr kurzen Exposition stark minimiert werden. Umfassendes Wissen über die auf Bäume wirkenden Windlasten ist eine grundlegende Voraussetzung, um Sturmschäden an Bäumen und in Wäldern zu minimieren. (i) Während zahlreiche (auch eigene) frühere Studien Muster von Wind-Baum-Interaktionen identifiziert und beschrieben haben, (ii) besteht immer noch eine grundlegende Wissenslücke hinsichtlich der absoluten instantanen Beträge von Windlasten, die Wind-Baum-Interaktionen hervorrufen. Diese fundamentale Wissenslücke besteht, weil nur rudimentäre quantitative Kenntnisse über die Verformung von Baumkronen unter realen Windbedingungen vorliegen (Rekonfiguration). Die Rekonfiguration bestimmt die Übertragung von kinetischer Strömungsenergie auf Baumkronen entscheidend mit. Das Projekt TreeCon soll dazu beitragen, diese Wissenslücke zu schließen. Die zu erwartenden Ergebnisse und die damit verbundenen neuen Erkenntnisse tragen dazu bei, zukünftige Sturmschäden an Bäumen und Wäldern zu minimieren. Für die Erzielung der neuen Kenntnisse wird ein neuartiges, kostengünstiges Messsystem zum Einsatz gebracht und mit bestehenden Messsystemen kombiniert, wodurch sich bisher nicht vollständig beantwortbare Fragen klären und Hypothesen überprüfen lassen. Das Messsystem eignet sich insbesondere für Untersuchungen an Laubbäumen.
| Origin | Count |
|---|---|
| Bund | 163 |
| Land | 2 |
| Wissenschaft | 2 |
| Type | Count |
|---|---|
| Förderprogramm | 161 |
| unbekannt | 2 |
| License | Count |
|---|---|
| offen | 163 |
| Language | Count |
|---|---|
| Deutsch | 153 |
| Englisch | 126 |
| Resource type | Count |
|---|---|
| Keine | 32 |
| Webseite | 131 |
| Topic | Count |
|---|---|
| Boden | 119 |
| Lebewesen und Lebensräume | 161 |
| Luft | 104 |
| Mensch und Umwelt | 162 |
| Wasser | 73 |
| Weitere | 163 |