API src

Found 4 results.

Minimierung der Umweltbelastung durch optimierte Lenkung der Reststofffluesse in der Schweisstechnik

Das Projekt "Minimierung der Umweltbelastung durch optimierte Lenkung der Reststofffluesse in der Schweisstechnik" wird vom Umweltbundesamt gefördert und von Universität Hannover, Fachbereich Maschinenbau, Institut für Werkstoffkunde durchgeführt. Auf dem gesamten Gebiet der Schweißtechnik - allgemein der Füge- und vor allem der Trennverfahren - fällt eine Vielzahl von Prozeßnebenprodukten an. Um Betrieben die Unsicherheiten hinsichtlich der Behandlung der Prozeßnebenprodukte und Abfälle zu nehmen, haben sich wissenschaftliche Institute mit unterschiedlichen Forschungsschwerpunkten in der Schweißtechnik und Werkstoffkunde für die Durchführung dieses Verbundforschungsprojekts zusammengeschlossen. Im Rahmen dieses Verbundprojektes sollten verfahrensbezogene Umweltleitfäden zur Lenkung betrieblicher Abfallströme erstellt werden. Zu Beginn des Projekts erfolgte eine Vereinbarung über angemessene Wege und Verfahren der empirischen Datengewinnung. Eine erste Entscheidung lautete, daß es für einige technische Verfahren (wie z.B. Schweißen) nicht sinnvoll ist, den Versuch einer schriftlichen Erhebung durchzuführen, da die Grundgesamtheit der Anwenderbetriebe nicht bekannt und somit auch keine statistisch gesicherte Repräsentativität erzielbar ist. Andere wie die Lasermaterialbearbeitung hatten hingegen die Chance, in einem überschaubaren Teilmarkt mit Hilfe der Befragung zu repräsentativen Ergebnissen zu gelangen. Deshalb wurde die schriftliche Befragung nicht zum verpflichtenden Standardinstrument bestimmt. Für alle Teilprojekte galt, daß im Sinne eines Methoden-Mix die empirische Datengewinnung auf fünf Wegen erfolgen sollte: Auswertung von Fachliteratur und Sekundäranalyse vorhandener Datenbestände (Entsorger, Umweltministerien o.ä.); mündliche oder fernmündliche Expertengespräche; betriebliche Expertengespräche und Fallstudien incl. betrieblicher Datenanalyse; ggf. Unterstützung durch einen Fragebogen; evtl. zusätzliche Laboranalysen.

Qualifizierung des Elektronenstrahlschweißens im Dickblechbereich für Anwendungen im Windenergieanlagenbau

Das Projekt "Qualifizierung des Elektronenstrahlschweißens im Dickblechbereich für Anwendungen im Windenergieanlagenbau" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Eisenhüttenkunde - IEHK durchgeführt. Due to ecological reasons and because of the need to remain independent from foreign energy suppliers, the power generation in offshore wind parks becomes more and more important in Germany. It is therefore planned to build up approximately 1,300 new offshore wind power plants with a capacity of 6,500 MW near the German coastline until 2020. The structures are installed on the ground of the sea in a water depth that might in some cases reach 50 m. The mechanical loading situation for these structures is characterised by an enormous weight combined with high cyclic stresses resulting from the service loads and the tide. Hence, hot rolled steels with a yield strength of 355 MPa are employed in a maximum thickness of 100 mm. Until now, the required toughness properties for these structural steels and their welds are 40 J at -20 C. However, in a plate thickness of 100 mm, only the submerged arc welding (SAW) process can be used to guarantee such toughness properties, but especially in these heavy plates, submerged arc welding is rather time consuming and consequently more uneconomic compared to other welding techniques. Due to these disadvantages, it can even be expected that only part of the planned power plants will be built up in time as the high welding time of several hours per m causes too many delays. From the point of structural integrity, it can be argued wether a Charpy impact toughness of 40 J is really required, as this criterion is only set based on experiences of mechanical and civil engineers. Thus, it can be concluded that different welding techniques should be regarded as alternatives to SAW in case that the 'real' toughness requirements are less than 40 J at -20 C. Electron beam welding would be a favourable welding process for such heavy plates as even 100 m thick plates can be welded in one single step, but until now the toughness requirements of 40 J have not yet been met. It is therefore the aim of the research project to reinforce the electron beam welding process for the application to heavy plates in offshore wind power plants. To reach this aim, the following tasks are be carried out: - improvement of the electron beam welding process in order to achieve better toughness properties of the welds, - application of reliable fracture mechanics concepts in order to calculate realisitc toughness requirements. With regard to the process, already a this stage of the project an enormous improvement of the toughness properties of EB weld seams could be demonstrated based on optimisation of the welding process. Furthermore, it could be shown that by establishing the leakage before breakage criterion combined with regular inspections, the toughness requirements can be significantly reduced. Thus, the EB welding can be applied to offshore wind energy installations even if steels of higher yield strength (e.g. S460Q) are selected.

Oekonomische Effektivitaetskontrolle von Gewaesserschutzmassnahmen in der Europaeischen Gemeinschaft

Das Projekt "Oekonomische Effektivitaetskontrolle von Gewaesserschutzmassnahmen in der Europaeischen Gemeinschaft" wird vom Umweltbundesamt gefördert und von Niedersächsisches Landesamt für Ökologie durchgeführt. Reduzierung von flaechenhaften und diffusen Naehrstoffeintraegen in Gewaesser; kalkulation von Kosten fuer Massnahmen zur Reduzierung von Naehrstoffeintraegen, die ueber das gesetzlich geforderte Niveau hinausgehen; Demonstration eines neuen, aussagefaehigeren und kostenguenstigeren Gewaesserguetmessverfahrens; Modernisierung von Ueberwachungssystemen.

Study of adsorption-based carbon dioxide capture and storage systems under wet conditions

Das Projekt "Study of adsorption-based carbon dioxide capture and storage systems under wet conditions" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Institut für Verfahrenstechnik durchgeführt. In order to be able to sustainably use fossil fuels as an energy source, various techniques are being considered to capture the carbon dioxide produced in combustion and sequester it or otherwise prevent it from being released into the atmosphere. Several of these techniques involve the adsorption of gases, especially CO2, to adsorbent solid materials, either as a means of separating gases from each other, or as a storage mechanism (e.g. in coal seams). In all cases of interest, moisture is present, affecting the adsorption of gases in ways that are not fully understood yet. This project will study the interaction of CO2 and the other gases involved (nitrogen, hydrogen, methane depending on the specific application) with different adsorbents in the presence of water. Adsorption plays a role in the capture of carbon dioxide as a technique to separate the greenhouse gas from other gases. This can be done in pre-combustion capture, where the CO2 has to be separated from hydrogen, usually by pressure swing adsorption (PSA) on activated carbon or zeolites; or it can be done by post-combustion capture, where the CO2 is separated from the rest of the flue gas, mainly nitrogen. This is typically done by temperature swing adsorption (TSA) on activated carbon. Another application involves adsorption as a way of extracting carbon dioxide directly from ambient air In the area of carbon dioxide storage, adsorption is significant when the carbon dioxide is to be used for enhanced coal bed methane recovery (ECBM). In this application, CO2 is injected into coal seams as a displacer for methane adsorbed into the pores in the coal. This is an attractive option to store CO2, as it enhances methane production at the same time. The capacity of coal for carbon dioxide has consistently been higher for carbon dioxide than for methane, leading to a net storage of carbon dioxide. Both systems for CO2 capture and for storage have been the subjects of study, but the effect that water has on these systems has yet to be investigated in detail. The scientific questions that are to be addressed with this project are (1) how to characterize the role of water on CO2 adsorption, (2) how to understand and describe it, and (3) how to use this knowledge to overcome or to exploit the effect of water in order to design better separation processes.

1