API src

Found 269 results.

UBA EU-ETS-Handbuch

Das Projekt "UBA EU-ETS-Handbuch" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt. Die Berichterstattung zur Emissionsentwicklung ist eine wichtige Säule der Klimapolitik. Sie ermöglicht zum einen den Fortschritt in Bezug auf die Klimaziele zu messen. Zum anderen kann die Wirksamkeit bestimmter Maßnahmen nur mit entsprechenden Daten beurteilt werden: Historische Daten sind für die Ex-post-Evaluierung unabdingbar, für die Ex-ante-Abschätzung kommen projizierte Daten und Modellierungsergebnisse dazu. Die verschiedenen Berichte/Datenquellen unterscheiden sich sowohl in Bezug auf den abgedeckten Zeitraum, die erfassten Emissionen sowie die verwendeten Klassifikationssysteme. Daher ist ein Vergleich der Daten und Datenkonzepte nicht immer leicht möglich. Ziel dieses Handbuchs ist es die Gemeinsamkeiten und Unterschiede der Datenkonzepte darzustellen und dadurch die Auswertungen zum stationären EU-Emissionshandel (EU-ETS) zu verbessern. Im Handbuch werden die Datenkonzepte im EU-ETS in Deutschland und der EU dargestellt. Die Abgrenzung des Emissionshandelssektors in anderen Berichtskategorien werden für das Treibhausgasinventar und im Vergleich zur Klassifikation der Wirtschaftszweige herausgearbeitet.

Fire - climate feedback in the Earth System

Das Projekt "Fire - climate feedback in the Earth System" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. Fires are an integral Earth System process, which is controlled by climate and at the same time impacts climate in multiple ways. As such fires form a feedback mechanism in the Earth System, which might amplify or dampen climate change. At present this feedback is not well understood nor is it represented in current generation Earth System models used to study climate change. The proposed research project aims to quantify the fire-climate feedback by incorporating the integral role of fires into an Earth System Model (ESM). Together with improved observational based process understanding the project will analyze how fires have developed throughout Earth history and how single fire driven processes contribute to the overall fire climate impact. A mechanistic terrestrial biosphere fire model will be implemented into the ESM and fire mediated climate relevant processes will be coupled between the different ESM compartments, including the atmosphere, ocean and cryosphere. This cross-disciplinary research project will foster the understanding of past climate change and will hopefully allow a better assessment of human induced future climate change by further constraining the climate sensitivity of the Earth system.

Inventarermittlung der F-Gase 2019/2020 - Daten von HF(C)KW, FKW, SF6, NF3, SF5CF3, H(C)FE und PFPMIE für die nationale Emissionsberichterstattung gemäß Klimarahmenkonvention für die Berichtsjahre 2019 und 2020

Das Projekt "Inventarermittlung der F-Gase 2019/2020 - Daten von HF(C)KW, FKW, SF6, NF3, SF5CF3, H(C)FE und PFPMIE für die nationale Emissionsberichterstattung gemäß Klimarahmenkonvention für die Berichtsjahre 2019 und 2020" wird vom Umweltbundesamt gefördert und von Öko-Recherche. Büro für Umweltforschung und -beratung GmbH durchgeführt. Der Bericht präsentiert die Emissionsdaten der fluorierten Treibhausgase HF(C)KW, FKW, SF6, NF3, SF5CF3, H(C)FE und PFPMIE (F-Gase) für die Jahre 1995-2020 für Deutschland. Seit 2005 bewegen sich die Emissionen fluorierter Treibhausgase (F-Gase) auf relativ konstantem Niveau. Der seit 2010 stattfindende leichte Anstieg der Emissionen war im Jahr 2018 erstmals rückläufig und sank auf 5.946 t, ausgedrückt in CO2-Äquivalenten 14,3 Mio. t. Dieser Abwärtstrend hat sich deutlich fortgesetzt, und so lagen die Emissionen im Jahr 2020 bei 5.281 t, was 12,1 t in CO2-Äquivalenten entspricht. Damit machen sie etwa 1,5 % an den Gesamtemissionen aller Treibhausgase in Deutschland aus, die 2020 bei etwa 793 Mio. t CO2-Äquivalenten lagen. Dieser Bericht ist entsprechend der Strukturierung des Nationalen Inventarberichts (NIR) aufgeteilt. In diesem alle Treibhausgase umfassenden Bericht werden die fluorierten Treibhausgase in den Sektor-Abschnitten 2.B, 2.C, 2.E, 2.F, 2.G und 2.H behandelt. Sektor 2.B befasst sich unter 2.B.9 mit den Emissionen aus der Produktion von halogenierten Kohlenwasserstoffen und SF6. Das folgende Kapitel 2.C behandelt die Metallproduktion. Hier werden unter 2.C.3 und 2.C.4 die Emissionen aus der Aluminium- und Magnesiumproduktion aufgeführt. Der Sektor 2.E beinhaltet die Emissionen aus der Elektronik-Industrie, der folgende Sektor 2.F diejenigen aus Anwendungen als ODS-Ersatz und der Sektor 2.G die â€ÌSonstige Produktherstellung und â€Ìverwendungâ€Ì. Unter dem Abschnitt 2.H werden vertrauliche Emissionen verschiedener Sektoren 1 aggregiert berichtet. Außerdem gibt es Informationen zu freiwillig berichteten fluorierten Treibhausgasen.

Standardization of Ice Forces on Offshore Structures Design (STANDICE)

Das Projekt "Standardization of Ice Forces on Offshore Structures Design (STANDICE)" wird vom Umweltbundesamt gefördert und von Dr. J. Schwarz durchgeführt. Objective: During the past six years two RTD-projects have been performed by a consortium of seven European partners to investigate ice forces on marine structures. The aim of this work has been to establish new methods for ice load predictions. The work has been supported by the EC under the projects LOLEIF and STRICE. The data compiled by these projects are of great importance for the future development of offshore wind energy converters, OWECS, in the ice-covered seas of Europe. Because the ice forces on marine structures are internationally heavily disputed the present design codes for OWECS as well as for all marine structures in ice-infested waters are not been considered reliable. Therefore, the main objective of this project is to contribute to the development of an international standard for the design of marine structures such as OWECS against ice loads with special emphasis on European sub-arctic ice conditions.

Forest management in the Earth system

Das Projekt "Forest management in the Earth system" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.

Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain

Das Projekt "Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft des Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei durchgeführt. The objective of EFORWOOD is to develop a quantitative decision support tool for Sustainability Impact Assessment of the European Forestry-Wood Chain (FWC) and subsets thereof (e.g. regional), covering forestry, industrial manufacturing, consumption and recycling. The objective will be achieved by:a) defining economic, environmental and social sustainability indicators ,b) developing a tool for Sustainability Impact Assessment by integrating a set of models ,c) supplying the tool with real data, aggregated as needed and appropriate,d) testing the tool in a stepwise procedure allowing adjustments to be made according to the experiences gained,e) applying the tool to assess the sustainability of the present European FWC (and subsets thereof) as well the impacts of potential major changes based on scenarios,f) making the adapted versions of the tool available to stakeholder groupings (industrial, political and others).The multi-functionality of the FWC is taken into account by using indicators to assess the sustainability of production processes and by including in the analysis the various products and services of the FWC. Wide stakeholder consultations will be used throughout the process to reach the objective. EFORWOOD will contribute to EU policies connected to the FWC, especially to the Sustainable Development Strategy. It will provide policy-makers, forest owners, the related industries and other stakeholders with a tool to strengthen the forest-based sector's contribution towards a more sustainable Europe, thereby also improving its competitiveness. To achieve this, EFORWOOD gathers a consortium of highest-class experts, including the most representative forest-based sector confederations.EFORWOOD addresses with a high degree of relevance the objectives set out in the 3rd call for proposals addressing Thematic Sub-priority 1.1.6.3 Global Change and Ecosystems, topic V.2.1. Forestry/wood chain for Sustainable Development. Prime Contractor: Stiftelsen Skogsbrukets Forskningsinstitut, Skogforsk; Uppsala; Sweden.

Palaeo-Evo-Devo of Malacostraca - a key to the evolutionary history of 'higher' crustaceans

Das Projekt "Palaeo-Evo-Devo of Malacostraca - a key to the evolutionary history of 'higher' crustaceans" wird vom Umweltbundesamt gefördert und von Universität Greifswald, Zoologisches Institut und Museum, Abteilung Cytologie und Evolutionsbiologie durchgeführt. In my project I aim at a better understanding of the evolution of malacostracan crustaceans, which includes very different groups such as mantis shrimps, krill and lobsters. Previous studies on Malacostraca, on extant as well as on fossil representatives, focussed on adult morphology.In contrast to such approaches, I will apply a Palaeo-Evo-Devo approach to shed new light on the evolution of Malacostraca. Palaeo-Evo-Devo uses data of different developmental stages of fossil malacostracan crustaceans, such as larval and juvenile stages. With this approach I aim at bridging morphological gaps between the different diverse lineages of modern malacostracans by providing new insights into the character evolution in these lineages.An extensive number of larval and juvenile malacostracans is present in the fossil record, but which have only scarcely been studied. The backbone of this project will be on malacostracans from the Solnhofen Lithographic Limestones (ca. 150 million years old), which are especially well preserved and exhibit minute details. During previous studies, I developed new documentation methods for tiny fossils from these deposits, e.g., fluorescence composite microscopy, and also discovered the first fossil mantis shrimp larvae. For malcostracan groups that do not occur in Solnhofen, I will investigate fossils from other lagerstätten, e.g., Mazon Creek and Bear Gulch (USA), or Montceaules- Mines and La-Voulte-sur-Rhône (France). The main groups in focus are mantis shrimps and certain other shrimps (e.g., mysids, caridoids), as well as the bottom-living ten-footed crustaceans (reptantians). Examples for studied structures are leg details, including the feeding apparatus, but also eyes. The results will contribute to the reconstruction of 3D computer models.The data collected in this project will be used for evaluating the relationships within Malacostraca, but mainly for providing plausible evolutionary scenarios, how the modern malacostracan diversity evolved. With the Palaeo-Evo-Devo approach, I am also able to detect shifts in developmental timing, called heterochrony, which is interpreted as one of the major driving forces of evolution. Finally, the reconstructed evolutionary patterns can be compared between the different lineages for convergencies. These comparisons might help to explain the convergent adaptation to similar ecological niches in different malacostracan groups, e.g., life in the deep sea, life on the sea bottom, evolution of metamorphosis or of predatory larvae.As the project requires the investigation of a large number of specimens in different groups, I will assign distinct sub-projects to three doctoral researchers. The results of this project will not only be published in peer-reviewed journals, but will also be presented to the non-scientific public, e.g., during fossil fairs or museum exhibitions with 3D models engraved in glass blocks.

Biopores in the subsoil: Formation, nutrient turnover and effects on crops with distinct rooting systems (BioFoNT)

Das Projekt "Biopores in the subsoil: Formation, nutrient turnover and effects on crops with distinct rooting systems (BioFoNT)" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Organischen Landbau durchgeführt. Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.

Impacts of well and Human Intrusion on Khulan (Wild Ass) and other threatened species in the Gobi Desert

Das Projekt "Impacts of well and Human Intrusion on Khulan (Wild Ass) and other threatened species in the Gobi Desert" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Forstzoologisches Institut, Professur für Wildtierökologie und Wildtiermanagement durchgeführt. The importance of the Gobi environment to the conservation of Khulan and other threatened wildlife and to the future of the pastoral livestock production is undeniable. At the present time, Mongolia is anticipating development of a commercialized agricultural sector that could easily cause greater intrusion of human activities in the Gobi environment than current pasto-ral livestock production. Development of other sectors of the Mongolian economy, especially mining and road construction, could also impact environmental security in general and habitat needs of the khulan and associated wildlife in the Gobi environment in particular. Work is required to clarify to what extent (if any) the wild ass is affected or competes with domestic livestock and other human intrusions, and to what degree. On the basis of these findings, ma-nagement steps for both khulan protection and rural livelihood/water resources development can be developed.

AURORa - Investigation of the Radar Backscatter of Rain Impinging on the Ocean Surface

Das Projekt "AURORa - Investigation of the Radar Backscatter of Rain Impinging on the Ocean Surface" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Over land, observations of rain rates are more or less operational. To obtain information about precipitation at the coastal zones, weather radars are used. However, over the oceans, especially away from the main shipping routes, no direct precipitation measurements are performed. In these regions, satellite data can provide information about precipitation events. Satellites deploying passive and active microwave sensors can operate independently of cloud cover and time of day. Passive microwave sensors give crude estimates of rain rates over large areas but cannot resolve small-scale rain events of short duration as are often observed in the tropics, for example. Active microwave sensors with high resolutions, such as synthetic aperture radars can provide more reliable information. Though the effect of rain on the atmosphere is a very topical area of research, the radar backscattering mechanisms at the water surface during rain events combined with wind are still not well understood. The purpose of this project is to investigate the radar backscattering from the water surface in the presence of rain and wind in order to interpret satellite radar data produced by active microwave sensors. Furthermore, the results should be embedded into models of the radar backscattering from the water surface to allow for estimating rain rates by using satellite data. Research topics: Rain impinging on a water surfaces generates splash products including crowns, cavities, stalks and secondary drops, which do not propagate, and ring waves and subsurface turbulence. We are investigating this phenomena at the wind-wave tank of the University of Hamburg. The tank is fitted with an artificial rain simulator of 2.3 m2 area mounted 4.5 m over the water surface. Rain drops of 2.1 and 2.9 mm in diameter with rain rates up to 100 mm/h have been produced. Wind with speeds 10 m/s and monomolecular slicks act on the water surface. The influence of the rain on the water surface is measured with a resistance type wire gauge, a two dimensional laser slope gauge and an coherent 9.8 GHz (x band) continuous wave scatterometer operating at VV-, HH- and HV-polarization. The influence of rain below the water surface is measured with colored raindrops which are observed with a video camera to investigate the turbulent motion and the depth of the mixed layer. At the North Sea Port of Buesum in Germany, a scatterometer operating at all polarizations and five frequencies will be mounted during summer of this year. The radar backscatter of the sea surface during rain events will be measured in combination with meteorological observations. With help of these measurements, existing radar backscatter models of the water surface will be improved for the presence of rain events. To validate the improved models, ERS-2 SAR-images will be compared with weather radar data.

1 2 3 4 525 26 27