Die Daten umfassen Straßenbäume und einen Teil der Bäume in Grünanlagen.
Das ATKIS® Basis-DLM beschreibt die topographischen Objekte der Landschaft im Vektorformat. Die Objekte werden durch ihre räumliche Lage, ihren geometrischen Typ, beschreibende Attribute und Beziehungen zu anderen Objekten (Relationen) definiert. Jedes Objekt besitzt deutschlandweit eine eindeutige Identifikationsnummer (Identifikator). Welche Objektarten das ATKIS® Basis-DLM beinhaltet und wie die Objekte zu bilden sind, ist im ATKIS-Objektartenkatalog (ATKIS®-OK nach AAA Anwendungsschema 7.1.2) festgelegt. Die einzelnen Objektarten werden zu verschiedenen Objektartengruppen (z. B. Siedlung, Verkehr) zusammengefasst, die wiederum zu Objektbereichen (z. B. Tatsächliche Nutzung) zusammengefasst werden.
Mit den erhobenen Messdaten wurde es möglich die Nährstoffeinträge in den Mondsee für 2 große Zubringer auch für vergangene Jahre zu berechnen. Die Messungen an 98 Punkten im Einzugsgebiet geben Aufschluss darüber wie sich die Phosphorkonzentration verhält und wie sich der Längsverlauf der drei großen Zubringer darstellt. Aus diesen Ergebnissen konnte man die durchschnittliche Nährstofffracht in den Mondsee abschätzen. Mit Hilfe dieses Parameters wurde der kritische Nährstoffeintrag für den Mondsee, der als oligotroph eingestuft wird, berechnet. Die Berechnungen haben ergeben, dass der Nährstoffeintrag in den Mondsee ziemlich genau dem kritischen Flächenaustrag entspricht. Die gemessenen Phosphorwerte im Seewasser ergeben ein ähnliches Bild in den letzten Jahren. Es tritt kaum eine Veränderung in der Phosphorkonzentration im Freiwasser auf, allerdings kann man den Trend nach dem Hochwasserjahr 2002 und dem trockenen Jahr 2003 gut erkennen, was bestätigt, dass bei gleich bleibendem Phosphoreintrag keine Verbesserung im See zu erwarten ist. Mit den erhobenen Zeitreihen konnte man einen Einblick gewinnen, wie sich die Phosphorkonzentration bei der Schneeschmelze verhält. Wassergesättigte Böden nach der Winterruhe, kein Niederschlag und trotzdem hohe Nährstoffkonzentrationen lassen den Schluss zu, dass besonders im Frühjahr Phosphor mobiler und leichter verfügbar ist als im restlichen Jahreskreis. Das bedeutet, dass das Ökosystem besonders im Frühling sehr sensibel reagiert. Die Nährstoffe nach Abklingen der Schneeschmelze aufzubringen, die natürliche Auswaschung abzuwarten, bringt weniger Auswaschung ins Gewässer und die später gedüngten Nährstoffe stehen vor Ort für das Pflanzenwachstum, besonders für den ersten Aufwuchs, zur Verfügung. Der Anteil an gelöstem Phosphor ist mit über 50 Prozent bei 70 Prozent der erhobenen Messwerte sehr hoch. Zu erwarten war, dass partikulär transportierter Phosphor den Hauptanteil an der Phosphorfracht hat. Dass ein großer Teil des Phosphors gelöst in den See gelangt macht ihn im aquatischen System schneller verfügbar und begünstigt das Algenwachstum. Die erhobenen Messwerte über das Abflussverhalten und die Phosphorkonzentration im Einzugsgebiet dienten als Basis für die Kalibrierung eines Modells zur Berechnung des mittleren jährlichen Nährstoffeintrags. Phosphorkonzentration, Phosphorfracht und Flächenaustrag wurden für die einzelnen Punkte im Einzugsgebiet für verschiedene Zeitpunkte berechnet. Um einen Teilaspekt des Wasserkreislaufs, die potentielle Evapotranspiration, in ihrer Größenordnung abschätzen zu können, wurden unterschiedliche Verdunstungsmodelle herangezogen. Mit der Bedingung, räumliche Unterschiede mit den Eingangsparametern erfassen zu können, um eine sinnvolle Anwendung in einem Geographischen Informationssystem zu ermöglichen, wurden die Berechnungen mit den vorhandenen klimatologischen Daten durchgeführt und ein Modell (WENDLING, 1984) als das beste ausgewählt.
Das Digitale Basis-Landschaftsmodell (Basis-DLM) ist ein ATKIS®-Produkt und beschreibt die topographischen Objekte der Landschaft und das Relief der Erdoberfläche im Vektorformat. Die Objekte werden einer bestimmten Objektart zugeordnet und durch ihre räumliche Lage, ihren geometrischen Typ, beschreibende Attribute und Beziehungen zu anderen Objekten (Relationen) definiert. Jedes Objekt besitzt deutschlandweit eine eindeutige Identifikationsnummer (Identifikator). Die räumliche Lage wird für das Basis-DLM maßstabs- und abbildungsunabhängig im Koordinatensystem der Landesvermessung angegeben.
Der Bodenrichtwert ist der durchschnittliche Lagewert des Bodens für eine Mehrheit von Grundstücken innerhalb eines abgegrenzten Gebiets (Bodenrichtwertzone), die nach Art und Maß der Nutzung weitgehend übereinstimmen und für die im Wesentlichen gleiche Wertverhältnisse vorliegen. Er ist bezogen auf den Quadratmeter Grundstücksfläche eines Grundstücks mit den dargestellten Grundstücksmerkmalen (Bodenrichtwertgrundstück). Abweichungen der Eigenschaften des einzelnen Grundstücks von den dargestellten Grundstücksmerkmalen des Bodenrichtwertgrundstücks bewirken Abweichungen seines Verkehrswertes vom Bodenrichtwert. Es sind Bodenrichtwerte ausgewiesen für Wohnbauflächen (Ein- und Mehrfamilienhäuser), Mischgebietsflächen, Kerngebietsflächen, gewerbliche Bauflächen und Sonderbauflächen, zum Teil mit weiter gehenden Differenzierungen. Weiterhin werden Flächen der Land- und Forstwirtschaft sowie sonstige Flächen dargestellt. Die Bodenrichtwerte liegen für folgende Jahre vor: 2024 - (Stichtag: 01.01.2024 Land Bremen) 2022 - (Stichtag: 01.01.2022 Land Bremen) 2021 - (Stichtag: 31.12.2020 Stadt Bremen) 2020 - (Stichtag: 31.12.2019 Stadt Bremerhaven) 2019 - (Stichtag: 31.12.2018 Stadt Bremen) 2018 - (Stichtag: 31.12.2017 Stadt Bremerhaven) 2017 - (Stichtag: 31.12.2016 Stadt Bremen) 2016 - (Stichtag: 31.12.2015 Stadt Bremerhaven) 2015 - (Stichtag: 01.01.2015 Stadt Bremen) 2013 - (Stichtag: 01.01.2013 Stadt Bremen) 2011 - (Stichtag: 01.01.2011 Stadt Bremen) 2010 - (Stichtag: 01.01.2010 Stadt Bremen) 2008 - (Stichtag: 01.01.2008 Stadt Bremen) 2006 - (Stichtag: 01.01.2006 Stadt Bremen) 2004 - (Stichtag: 01.01.2004 Stadt Bremen)
Web Map Service (WMS) zum Thema Historische Karten 1:5000. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
A detailed attributed point feature shapefile of 6059 pingo locations in a 3.5 × 10⁶ km² region of northern Asia was manually assembled from 1:200 000 scale Russian topographic maps. These medium-scale maps are based on detailed mapping efforts at 1:50 000 and 1:100 000 scales, which in turn are derived from aerial photography acquired in the 1970-1980s (Soviet Military Topographic Survey or Voenno-Topograficheskoe Upravle-nie General'nogo Shtaba, VTU GSh). A first order analysis of pingo distribution was carried out with respect to permafrost, landscape characteristics, surface geology, hydrology, climate, and elevation datasets using a Geographic Information System. The study area comprises the North Asian lowland regions of North, Northeast, Far East and Central Siberia and adjacent mountain ranges from 60.0° N to 76.3° N latitude and 60.0° E to 180.0° W longitude. The geographic re-gions covered in this study are the northern part of the West Siberian Lowlands including the Yamal and Gydan peninsulas, Taymyr Peninsula, Putorana Plateau, Khatanga-Anabar-Olenek Lowlands, Lena River Delta, Lena River Valley, central Yakutian Lowlands around Yakutsk; Yana-Indigirka-Kolyma Lowlands, New Siberian Islands, and the far east Siberian Chukotka region.
Abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 10 Meter auf Basis des DGM1. Für die Fläche der Freien und Hansestadt Hamburg (ohne das Gebiet des hamburgischen Wattenmeeres) wurde in 2020 eine Laserscanvermessungen (Airborne Laserscanning) durchgeführt. Die Daten liegen im Lagestatus 310 (ETRS89/UTM) vor, mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 105 cm. In Bereichen von Abschattungen (Brücken), Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig werden vom LGV folgende Rasterweiten angeboten: DGM 1 (Rasterweite 1m), DGM 10 (Rasterweite 10m), DGM 25 (Rasterweite 25m). Eine jährliche Aktualisierung dieser Daten erfolgt über Luftbildbefliegungen. Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung groß- und kleinräumige Anwendungen abgeleitet werden.
Aus Laserscanvermessungen (Airborne Laserscanning) oder photogrammetrischen Produkten abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 1 Meter für die Fläche der Freien und Hansestadt Hamburg. Die Daten stammen jeweils aus den landesweiten 3D-Laserscanbefliegungen aus 2010, 2020 und 2022 und liegen im Lagestatus ETRS89_UTM32 (Lagestatus 310) und mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH vor. Eine punktuelle Aktualisierung dieser Daten erfolgt über photogrammetrische Produkte und ist ggf. in den Metadaten der einzelnen Jahrgänge dokumentiert. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 15 cm. In Bereichen von Abschattungen (z. B.: Brücken), dichter Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig wird vom LGV ab dem Jahr 2022 folgende Rasterweite angeboten: DGM 1 (Rasterweite 1m). Ältere Jahrgänge haben zusätzlich noch folgende Rasterweiten: DGM 10 (Rasterweite 10m) DGM 25 (Rasterweite 25m) Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung für groß- und kleinräumige Anwendungen abgeleitet werden. Aus Laserscanvermessungen (Airborne Laserscanning) oder photogrammetrischen Produkten abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 1 Meter für die Fläche der Freien und Hansestadt Hamburg. Die Daten stammen jeweils aus den landesweiten 3D-Laserscanbefliegungen aus 2010, 2020 und 2022 und liegen im Lagestatus ETRS89_UTM32 (Lagestatus 310) und mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH vor. Eine punktuelle Aktualisierung dieser Daten erfolgt über photogrammetrische Produkte und ist ggf. in den Metadaten der einzelnen Jahrgänge dokumentiert. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 15 cm. In Bereichen von Abschattungen (z. B.: Brücken), dichter Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig wird vom LGV ab dem Jahr 2022 folgende Rasterweite angeboten: DGM 1 (Rasterweite 1m). Ältere Jahrgänge haben zusätzlich noch folgende Rasterweiten: DGM 10 (Rasterweite 10m) DGM 25 (Rasterweite 25m) Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung für groß- und kleinräumige Anwendungen abgeleitet werden.
Origin | Count |
---|---|
Bund | 3391 |
Europa | 2 |
Kommune | 37 |
Land | 621 |
Wirtschaft | 13 |
Wissenschaft | 219 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Chemische Verbindung | 1 |
Daten und Messstellen | 186 |
Ereignis | 3 |
Förderprogramm | 2538 |
Lehrmaterial | 2 |
Software | 1 |
Taxon | 584 |
Text | 274 |
Umweltprüfung | 27 |
unbekannt | 418 |
License | Count |
---|---|
geschlossen | 1058 |
offen | 2826 |
unbekannt | 150 |
Language | Count |
---|---|
Deutsch | 3512 |
Englisch | 866 |
Resource type | Count |
---|---|
Archiv | 100 |
Bild | 382 |
Datei | 793 |
Dokument | 145 |
Keine | 2066 |
Unbekannt | 17 |
Webdienst | 78 |
Webseite | 1611 |
Topic | Count |
---|---|
Boden | 2609 |
Lebewesen und Lebensräume | 3573 |
Luft | 1794 |
Mensch und Umwelt | 4020 |
Wasser | 1937 |
Weitere | 3426 |