API src

Found 29 results.

Forest functions arrangement with the CBD's Ecosystem Approach - A study on the Bengawan Solo River Basin, Java, Indonesia

Das Projekt "Forest functions arrangement with the CBD's Ecosystem Approach - A study on the Bengawan Solo River Basin, Java, Indonesia" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Burckhardt-Institut, Professur für Naturschutz und Landschaftspflege durchgeführt. The natural capital of forests consists to a great extend of the forests environmental functions for human well-being, which not only include goods and services (source and sink functions) but also include life-support functions that reflect ecosystem performance (ecosystem functioning). Shifting the management approach from a traditional one to one that is more aware of the ecosystem complexity, the idea of 'ecosystem functioning is appearing to tackle gradual declines of ecosystem functions. Within CBDs framework, the Ecosystem Approach has been introduced on account of the necessity for open decision making with strong links between all stakeholders and the latest scientific knowledge due to uncertainty and unpredictability in nature. The Ecosystem Approach is still in need of further elaboration, even though as a concept Ecosystem Approach has been widely accepted. To aim forest enhancement, this approach has been regarded as the most feasible concept for the study area, the Bengawan Solo River Basin - Java, Indonesia. Therefore the principles and operational guidelines will be used to analyse and evaluate the current forest management in those areas of the Bengawan Solo River Basin, in which ecosystem function is the basis for forest development area. This research focuses on ecological functions of forests at various levels of ecosystem management planning, from the forestry sectors point of view.

First-principles kinetic modeling for solar hydrogen production

Das Projekt "First-principles kinetic modeling for solar hydrogen production" wird vom Umweltbundesamt gefördert und von Technische Universität München, Fakultät für Chemie, Lehrstuhl für Theoretische Chemie durchgeführt. The development of sustainable and efficient energy conversion processes at interfaces is at the center of the rapidly growing field of basic energy science. How successful this challenge can be addressed will ultimately depend on the acquired degree of molecular-level understanding. In this respect, the severe knowledge gap in electro- or photocatalytic conversions compared to corresponding thermal processes in heterogeneous catalysis is staggering. This discrepancy is most blatant in the present status of predictive-quality, viz. first-principles based modelling in the two fields, which largely owes to multifactorial methodological issues connected with the treatment of the electrochemical environment and the description of the surface redox chemistry driven by the photo-excited charges or external potentials.Successfully tackling these complexities will advance modelling methodology in (photo)electrocatalysis to a similar level as already established in heterogeneous catalysis, with an impact that likely even supersedes the one seen there in the last decade. A corresponding method development is the core objective of the present proposal, with particular emphasis on numerically efficient approaches that will ultimately allow to reach comprehensive microkinetic formulations. Synergistically combining the methodological expertise of the two participating groups we specifically aim to implement and advance implicit and mixed implicit/explicit solvation models, as well as QM/MM approaches to describe energy-related processes at solid-liquid interfaces. With the clear objective to develop general-purpose methodology we will illustrate their use with applications to hydrogen generation through water splitting. Disentangling the electro- resp. photocatalytic effect with respect to the corresponding dark reaction, this concerns both the hydrogen evolution reaction at metal electrodes like Pt and direct water splitting at oxide photocatalysts like TiO2. Through this we expect to arrive at a detailed mechanistic understanding that will culminate in the formulation of comprehensive microkinetic models of the light- or potential-driven redox process. Evaluating these models with kinetic Monte Carlo simulations will unambiguously identify the rate-determining and overpotential-creating steps and therewith provide the basis for a rational optimization of the overall process. As such our study will provide a key example of how systematic method development in computational approaches to basic energy sciences leads to breakthrough progress and serves both fundamental understanding and cutting-edge application.

International Collaboration in Chemistry: First Principles Multi-Lattice Kinetic Monte Carlo Simulations of NOx Storage Reduction Catalysts

Das Projekt "International Collaboration in Chemistry: First Principles Multi-Lattice Kinetic Monte Carlo Simulations of NOx Storage Reduction Catalysts" wird vom Umweltbundesamt gefördert und von Technische Universität München, Fakultät für Chemie, Lehrstuhl für Theoretische Chemie durchgeführt. The broad objective of the research is to gain a fundamental understanding of the surface reaction chemistry of exhaust catalysts operating under cycling conditions. Using an integrated theoretical approach we specifically target NOx abatement, with particular emphasis on the appearance and destruction of surface oxide phases as the reactor conditions cycle from oxidative to reductive during the operation of the NOx Storage Reduction (NSR) catalyst system. Methodologically this requires material-specific, quantitative and explicitly time-dependent simulation tools that can follow the evolution of the system over the macroscopic time-scales of NSR cycles, while simultaneously accounting for the atomic-scale site heterogeneity and spatial distributions at the evolving surface. To meet these challenging demands we will develop a novel multi-scale methodology relying on a multi-lattice first-principles kinetic Monte Carlo (kMC) approach. As representative example the simulations will be carried out on a PdO(101)/Pd(100) surface oxide model, but care will be taken to ensure a generalization of the multi-lattice first-principles kMC approach to other systems in which phase transformations may occur and result in a change in the surface lattice structure depending upon environmental variables.

Sustainable Water Resources Management in the Yanqi Basin, Sinkiang, China

Das Projekt "Sustainable Water Resources Management in the Yanqi Basin, Sinkiang, China" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Institut für Verkehrsplanung und Transportsysteme durchgeführt. Irrigation in the Yanqi Basin, Sinkiang, China has led to water table rise and soil salination. A model is used to assess management options. These include more irrigation with groundwater, water saving irrigation techniques and others. The model relies on input data from remote sensing.The Yanqi Basin is located in the north-western Chinese province of Xinjiang.This agriculturally highly productive region is heavily irrigated with water drawn from the Kaidu River. The Kaidu River itself is mainly fed by snow and glacier melt from the Tian Mountain surrounding the basin. A very poor drainage system and an overexploitation of surface water have lead to a series of environmental problems: 1. Seepage water under irrigated fields has raised the groundwater table during the last years, causing strongly increased groundwater evaporation. The salt dissolved in the groundwater accumulates at the soil surface as the groundwater evaporates. This soil salinization leads to degradation of vegetation as well as to a loss of arable farmland. 2. The runoff from the Bostan Lake to the downstream Corridor is limited since large amount of water is used for irrigation in the Yanqi Basin. Nowadays, the runoff is maintained by pumping water from the lake to the river. The environmental and ecological system is facing a serious threat.In order to improve the situation in the Yanqi Basin, a jointly funded cooperation has been set up by the Institute of Environmental Engineering, Swiss Federal Institute of Technology (ETH) , China Institute of Geological and Environmental Monitoring (CIGEM) and Xinjiang Agricultural University. The situation could in principle be improved by using groundwater for irrigation, thus lowering the groundwater table and saving unproductive evaporation. However, this is associated with higher cost as groundwater has to be pumped. The major decision variable to steer the system into a desirable state is thus the ratio of irrigation water pumped from the aquifer and irrigation water drawn from the river. The basis to evaluate the ideal ratio between river and groundwater - applied to irrigation - will be a groundwater model combined with models describing the processes of the unsaturated zone. The project will focus on the following aspects of research: (...)

Energy and Water Fluxes at the Soil Atmosphere Interface of Water Repellent soils

Das Projekt "Energy and Water Fluxes at the Soil Atmosphere Interface of Water Repellent soils" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Ökologie, Fachgebiet Bodenkunde durchgeführt. Water repellency (WR) plays a significant role in a large number of soils all over the world. In many regions global warming will lead to drier land surfaces and thus, increasing the likeliness of actual water repellency for such soils. The hydrological effects of WR (surface runoff, water erosion, preferential flow) have been relatively well investigated in the last decades. However, its effect on the energy balance between soil and atmosphere has not been studied yet. We postulate that global warming does not only lead to an increase in WR of soils, but WR has an impact on the energy balance and thus, will lead to a feedback on global warming. In order to test our hypothesis, we want to determine all components of the energy- and water balance between soil and atmosphere for a strongly water repellent soil. As a reference we want to repeat the same measurements for the same soil, at which the WR has been suspended by application of a surfactants. While the laboratory studies aim to give insight into more principle processes, the lysimeter (bare and with plants) and field scale studies shall give information about integrated complex natural processes. The gained knowledge shall be implemented into a numerical simulation tool for modeling water and energy balances in order to predict the effects of WR under different atmospheric conditions and physical soil properties.

Trees outside forest: Assessment

Das Projekt "Trees outside forest: Assessment" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Burckhardt-Institut, Abteilung Waldinventur und Fernerkundung durchgeführt. Tree resources outside the forest (TOF) serve a number of ecological and socio-economic functions, similar in principle, but different in extent to the functions of forest. This resource is not yet fully recognized in natural resources assessments, particularly on a regional level. Many people in particular in the Tropics depend directly on this resource. For TOF sustainability, politics and management options must be developed and implemented. It means that good information about the assessment of this resource must be available. In this project, options of TOF assessment and mapping on a regional basis will be developed based in the results of earlier studies of the TROF project (EU- INCO DC Program. Contract No ERBIC18 CT98 0323) and others research projects experiences in Latin America. Objectives: To develop an approach to the TOF assessment and mapping on a regional basis.

Light in - Light out

Das Projekt "Light in - Light out" wird vom Umweltbundesamt gefördert und von Universität Basel, Institut für Anorganische Chemie durchgeführt. Mankind is approaching a crisis in energy generation and utilization. Traditional fossil fuel reserves are diminishing and legislative issues regarding CO2 emission will make use of existing lower grade reserves unattractive. New technologies have to be developed to satisfy the ever-increasing energy demand and to maximize efficient energy usage. The materials chemist, through the design of new materials with novel properties and by controlling interfacial interactions between materials, will play a crucial role in these endeavours and in enabling the paradigm shift that is required. This project is centred around two core and inter-related issues (i) energy generation from photovoltaics using sunlight and (ii) efficient lighting devices based on light-emitting electrochemical cells (LECs) and organic light emitting diodes (OLEDs). Both of these topics are areas of intense activity world-wide. Within Europe the PIs research group is one of the leaders in the field. However, as research efforts in these areas are proving successful and proof-ofprinciple systems are being established and optimized, a new factor needs to be addressed. State of the art photovoltaic devices based upon the dye-sensitized solar cell (DSC) most frequently utilize inorganic dyes comprising ruthenium complexes of oligopyridine ligands. The projected next generation mass market OLEDs and prototype LECs are based upon iridium complexes containing cyclometallated pyridine ligands. A traditional criticism of these approaches related to the costs of the raw materials although this is in reality low compared to the costs of other components. However, the price reflects in part the availability of these metals and in this respect devices based upon ruthenium (1 ppb by atom in Earth crust) or iridium (0.05 ppb by atom in Earth crust) are unsustainable. This project is concerned with the development of complexes based upon abundant and sustainable first row transition metals to replace second and third row transition metals in these devices. Initial efforts will centre upon complexes of copper(I) and zinc(II) which have well-established photochemistry and photophysics making them suitable for such applications. The PI has already established proof-of-principle for the replacement of ruthenium by copper in DSCs and is a world leader in this technology. The work on the two projects will involve (i) materials synthesis and characterization (ii) computational modelling (iii) device construction and testing and (iv) property optimization.

Transport Innovation Deployment for Europe (TIDE)

Das Projekt "Transport Innovation Deployment for Europe (TIDE)" wird vom Umweltbundesamt gefördert und von Wuppertal Institut für Klima, Umwelt, Energie gGmbH durchgeführt. The mission of the TIDE project will be to enhance the broad transfer and take-up of 15 innovative urban transport and mobility concepts throughout Europe and to make a visible contribution to establish them as mainstream measures. The TIDE partners will make a range of new and feasible solutions easily accessible to address key challenges of urban transport such as energy efficiency, decarbonisation, demographic change, safety, access for all and new economic and financial conditions. TIDE will focus on 15 innovative concepts in five thematic clusters: financing models and pricing measures (1), non-motorised transport (2), network and traffic management to support traveller information (3), electric vehicles (4) and public transport organisation (5). Sustainable Urban Mobility Plans will be a horizontal topic to integrate the cluster activities. The project will provide a strong approach in methodology, content and outreach. The needs of practitioners in European cities and regions will be a guiding principle. A particular focus will also be on providing guidance for finding cost-efficient solutions (cost-benefit analysis). The project will refine existing and well proven transferability methodologies and integrate them into an easy to apply handbook. Face-to-Face training and exchange events as well as guidelines and e-learning on how to successfully implement innovative solutions will be the key tools to effectively support a wide range of take-up candidates in overcoming real or perceived barriers to implementation. A broad portfolio of dissemination activities will ensure a high visibility of the project. TIDE will actively support 15 committed cities in developing implementation scenarios. They will demonstrate how to successfully prepare implementation of innovative solutions and provide examples to a wider group of cities. An experienced and committed consortium will ensure that the advanced project approach will achieve a well visible impact.

MYFISH - Maximising yield of fisheries while balancing ecosystem, economic and social concerns

Das Projekt "MYFISH - Maximising yield of fisheries while balancing ecosystem, economic and social concerns" wird vom Umweltbundesamt gefördert und von Universität zu Kiel, Institut für Volkswirtschaftslehre, Lehrstuhl für Umwelt-, Ressourcen- und Ökologische Ökonomik durchgeführt. The MSY concept was included as a principle in the 2009 Green Paper on the reform of the Common Fisheries Policy (CFP) in accordance with the global imperative to manage fish stocks according to the maximum sustainable yield (MSY). This implies a commitment to direct management of fish stocks towards achieving MSY by 2015. Attaining this goal is complicated by the lack of common agreement on the interpretation of 'sustainability' and 'yield' and by the effects that achieving MSY for one stock may have on other stocks and broader ecosystem, economic, or social aspects. MYFISH will provide definitions of MSY variants which maximize other measures of 'yield' than biomass and which account for the fact that single species rarely exist in isolation. Further, MYFISH will redefine the term 'sustainable' to signify that Good Environmental Status (MSFD) is achieved and economically and socially unacceptable situations are avoided, all with acceptable levels of risk. In short, MYFISH aims at integrating the MSY concept with the overarching principals of the CFP: the precautionary and the ecosystem approach. MYFISH will achieve this objective through addressing fisheries in all RAC areas and integrating stakeholders (the fishing industry, NGOs and managers) throughout the project. Existing ecosystem and fisheries models will be modified to perform maximization of stakeholder approved yield measures while ensuring acceptable impact levels on ecosystem, economic and social aspects. Implementation plans are proposed and social aspects addressed through active involvement of stakeholders. Finally, effects of changes in environment, economy and society on MSY variants are considered, aiming at procedures rendering the MSY approach robust to such changes. The expertise of 26 partners from relevant disciplines including fisheries, ecosystem, economic and social science are involved in all aspects of the project. Global experience is engaged from North America and the South Pacific.

LEAD-ERA Ecomanindustry: Fostering industrial ecology and eco-efficiency in the manufacturing industry

Das Projekt "LEAD-ERA Ecomanindustry: Fostering industrial ecology and eco-efficiency in the manufacturing industry" wird vom Umweltbundesamt gefördert und von Fachhochschule Nordwestschweiz, Hochschule für Life Sciences, Institut für Ecopreneurship durchgeführt. Present concepts of industrial management are based on a linear value chain of products and services. Input materials such as raw materials, water and energy are transformed into products and by-products but cogenerating significant amount of wastes and polluting emissions. Cleaner production approach, focusing on single process efficiency within companies, and industrial symbiosis approach, focusing on systemic spatial resource efficiency among different companies, are both contributing to reduce the environmental impact of the industrial production. In this context, different tools to optimize industrial management have been developed, but none of them include both approaches. The aim of the present project is to combine both approaches in order to increase the overall resource efficiency of industrial processes within a system of different factories. Overall goal of the program Ecomanindustry: Development of a universal reproducible software based tool called CPIS for decision support integrating the existing experiences and methodologies of Cleaner Production (CP) and Industrial Symbiosis (IS). The CPIS-tool will facilitate inter-industrial assessment and communication for waste avoidance and reuse of materials based on the Software as a Service (SaaS) principles. Specific goals of the swiss partners: FHNW: FHNW will be the coordinator of the overall Project and lead field tests and case studies. FHNW will collect customer feedback on existing software and test user friendly and failure free functionality of a beta version of the developed CPIS-tool in a field test, and proof customer acceptance of the CPIS-tool application in two case studies. UNIL: UNIL will gather and valorize previous research and experiences of existing GIS-based decision support tools for the development of eco-industrial parks, design the concept, functionalities and boundaries of the software-based CPIS-tool, and choose the appropriate technologies to be implemented in the CPIS-tool. SOFIES: SOFIES will build a community of users and service provider, ensure the long term development of the CPIS-tool, promote the dissemination to other countries and elaborate adequate user guide and training to facilitate dissemination.

1 2 3