Download des Datenbestands aus dem Wasserhaushaltsmodell mGROWA (Forschungszentrum Jülich im Auftrag des LANUV) als Referenzdatensatz für das Bundesland Nordrhein-Westfalen im 100 x 100 m-Raster. Hier: Abflusskomponente Sickerwasserrate in Form der Jahressummen 1961-2022 in mm als ASCII-Grid. Stand der Modelldaten: 04/2023, Landnutzungsdaten: Stand 2017. Detaillierte Beschreibung des mGROWA-Modells und der genutzten Eingangsdaten, siehe: LANUV-Fachbericht 110, Teilbericht IIa, link: https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110b.pdf
Download des Datenbestands aus dem Wasserhaushaltsmodell mGROWA (Forschungszentrum Jülich im Auftrag des LANUV) als Referenzdatensatz für das Bundesland Nordrhein-Westfalen im 100 x 100 m-Raster. Hier: Abflusskomponente urbaner Direktabfluss in Form der Jahressummen 1961-2022 in mm als ASCII-Grid. Stand der Modelldaten: 04/2023, Landnutzungsdaten: Stand 2017. Detaillierte Beschreibung des mGROWA-Modells und der genutzten Eingangsdaten, siehe: LANUV-Fachbericht 110, Teilbericht IIa, link: https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110b.pdf
Download des Datenbestands aus dem Wasserhaushaltsmodell mGROWA (Forschungszentrum Jülich im Auftrag des LANUV) als Referenzdatensatz für das Bundesland Nordrhein-Westfalen im 100 x 100 m-Raster. Hier: Abflusskomponente Grundwasserneubildung in Form der Jahressummen 1961-2022 in mm als ASCII-Grid. Stand der Modelldaten: 04/2023, Landnutzungsdaten: Stand 2017. Detaillierte Beschreibung des mGROWA-Modells und der genutzten Eingangsdaten, siehe: LANUV-Fachbericht 110, Teilbericht IIa, link: https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110b.pdf
Grundlage für die in dieser Karte dargestellten Werte ist das rasterzellenbasierte Wasserhaushaltsmodell mGROWA (Forschungszentrum Jülich), welches als Eingangsdaten Klima, Landnutzung, Topographie, Bodenkarte sowie Geologische Karten verwendet. In mGROWA wird zunächst der Gesamtabfluss in täglicher Auflösung auf Basis der jeweiligen Niederschlagsmenge und der berechneten tatsächlichen Verdunstung bilanziert. Dabei wird die Wasserspeicherung und Sickerbewegung in bis zu 5 Bodenschichten sowie ggf. möglicher kapillarer Aufstieg aus dem Grundwasser berücksichtigt. Die berechneten Tageswerte werden nachfolgend auf Monate, Jahre oder längere Zeiträume aggregiert (hier 1981-2010, 1991-2020, 2011-2020). Nachfolgend wird der Gesamtabfluss in die Abflusskomponenten Direktabfluss und Grundwasserneubildung aufgeteilt. Unter Grundwasserneubildung wird der Teil des Gesamtabflusses verstanden, der als infiltrierendes Sickerwasser dem Grundwasser zugeht. Die Netto-Grundwasserneubildung berücksichtigt mögliche Verdunstungsverluste infolge vom kapillarem Aufstieg aus dem Grundwasser. Im mehrjährigen Mittel kann die Netto-Grundwasserneubildung dem mehrjährigen grundwasserbürtigen Abfluss (Basisabfluss) gleichgesetzt werden. Eine detaillierte Beschreibung des mGROWA-Modells und der genutzten Eingangsdaten enthält: LANUV-Fachbericht 110, Teilbericht IIa, link: https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110b.pdf Enthaltene Datensätze (Rasterkarten): (Netto-)Grundwasserneubildung Langjährige Mittelwerte (1981-2010, 1991-2020, 2011-2020) berechnet durch FZ Jülich (Stand 2021)
Grundlage für die in dieser Datenzusammenstellung enthaltenen Rasterkarten der langjährigen Wasserhaushaltskomponenten ist das rasterzellenbasierte Wasserhaushaltsmodell mGROWA (Forschungszentrum Jülich), welches als Eingangsdaten Klima, Landnutzung, Topographie, Bodenkarte sowie Geologische Karten verwendet. In mGROWA werden zunächst standortbezogen (100 x 100 m) auf Basis der jeweiligen Niederschlagsmengen und klimatischen Einflussgrößen die tatsächliche Verdunstung und der Gesamtabfluss in täglicher Auflösung berechnet. Dabei wird die Wasserspeicherung und Sickerbewegung in bis zu 5 Bodenschichten sowie ggf. möglicher kapillarer Aufstieg aus dem Grundwasser berücksichtigt. Die berechneten Tageswerte werden nachfolgend auf Monate, Jahre oder längere Zeiträume aggregiert (hier 1981-2010, 1991-2020, 2011-2020). Nachfolgend wird der Gesamtabfluss auf Basis der Standorteigenschaften (vgl. Rasterkarte „Standorteigenschaften zur Aufteilung des Gesamtabflusses in mGROWA“) in verschiedene Abflusskomponenten aufgeteilt. In der Datenzusammenstellung sind neben den Rasterkarten der tatsächlichen Verdunstung, des Gesamtabflusses und der Standorteigenschaften die Rasterkarten der Abflusskomponenten urbaner Direktabfluss, Sickerwasserrate, Zwischenabfluss, Dränageabfluss, Grundwasserneubildung und Direktabfluss enthalten. Dargestellt werden jeweils langjährige Mittelwerte (1981-2010, 1991-2020, 2011-2020). Eine detaillierte Beschreibung ist in den Metadaten zu dieser Datenzusammenstellung enthalten (Link). Die in dieser Datenzusammenstellung enthaltene Karten der langjährigen Grundwasserneubildung sind identisch mit den auch als separate Datensätze „(Netto-)Grundwasserneubildung“ veröffentlichten Karten der Grundwasserneubildung. Enthaltene Datensätze (Rasterkarten): Tatsächliche Verdunstung (Evapotranspiration) Langjährige Mittelwerte (1981-2010, 1991-2020, 2011-2020) berechnet durch FZ Jülich (Stand 2021) Gesamtabfluss Langjährige Mittelwerte (1981-2010, 1991-2020, 2011-2020) berechnet durch FZ Jülich (Stand 2021) Standorteigenschaften zur Aufteilung des Gesamtabflusses in mGROWA estellt durch FZ Jülich (Stand 2021) Urbaner Direktabfluss Langjährige Mittelwerte (1981-2010, 1991-2020, 2011-2020) berechnet durch FZ Jülich (Stand 2021) Sickerwasserrate Langjährige Mittelwerte (1981-2010, 1991-2020, 2011-2020) berechnet durch FZ Jülich (Stand 2021) Zwischenabfluss Langjährige Mittelwerte (1981-2010, 1991-2020, 2011-2020) berechnet durch FZ Jülich (Stand 2021) Dränageabfluss Langjährige Mittelwerte (1981-2010, 1991-2020, 2011-2020) berechnet durch FZ Jülich (Stand 2021) Grundwasserneubildung Langjährige Mittelwerte (1981-2010, 1991-2020, 2011-2020) berechnet durch FZ Jülich (Stand 2021) Direktabfluss Langjährige Mittelwerte (1981-2010, 1991-2020, 2011-2020) berechnet durch FZ Jülich (Stand 2021)