API src

Found 1583 results.

Corrections

s/gwn/Gen/gi

Nitrataustragsgefährdung nach § 7 AVV GeA der Referenzparzellen in NRW Stand 01/2022

Dargestellt wird der „maximal tolerierbare N-Saldo in kg N/(ha*a) zur Einhaltung des Grundwasserschwellenwertes von maximal 50 mg/L im Sickerwasser unterhalb der durchwurzelbaren Bodenzone“ pro Feldblock. Es handelt sich dabei um den Medianwert pro Feldblock aus dem Rechenmodell GROWA+ NRW 2021, berechnet entsprechend der Vorschrift gemäß § 7 AVV GeA und Anlage 3. Das Modellergebnis wurde im Rahmen des Projektes GROWA+ NRW 2021 durch das Forschungszentrum Jülich in einem 100 x 100 m-Raster entsprechend der in Anlage 3 der AVV GeA beschriebenen Methodik berechnet. Ausgehend von den Werten pro Rasterzelle wurden die Medianwerte pro Feldblock ermittelt. Die Medianwert-Berechnung erfolgte durch das LANUV. Der Berechnung liegen folgende Eingangsdaten zu Grunde: • Denitrifikationsbedingungen im Boden entsprechend Bodenkarte 1:50.000 (GD NRW) • nutzbare Feldkapazität entsprechend Bodenkarte 1:50.000 (GD NRW) • Durchwurzelungstiefe entsprechend Bodenkarte 1:50.000 (GD NRW) • Raster (100 x 100 m) der Landnutzung erstellt auf Basis von ATKIS-DLM und INVEKOS 2016/2017 im Rahmen des Projekts GROWA+ NRW 2021 (Thünen-Institut / Landwirtschaftskammer NRW), Stand 2019 • Langjährige mittlere Sickerwasserrate berechnet mit dem Wasserhaushaltsmodell mGROWA (FZ Jülich) pro Rasterzelle 100 x 100 m für die Zeitreihe 1991-2010, Stand 2019 • Aktuellste verfügbare landnutzungsspezifische atmosphärische N-Deposition als Hintergrundwert aus dem PINETI3-Projekt des Umweltbundesamtes, basierend auf der Zeitreihe 2010-2015 Der Datensatz enthält die Feldblöcke gemäß Feldblockstatistik NRW 2021 als Polygone (Feature in geodatabase „GLDN-Nitrataustragsgefaehrdung-nach-Par-7-AVV-GeA_EPSG25832_Geodatabase.gdb“ bzw. shape „GLDN-Nitrataustragsgefaehrdung-nach-Par-7-AVV-GeA_EPSG25832“).

Mit Nitrat belastete Gebiete nach § 13a DüV (01/2024) und Betroffene Feldblöcke (Stand 09/2023) innerhalb der mit Nitrat belasteten Gebiete nach § 13a DüV (01/2024)

Auf den innerhalb der mit Nitrat belasteten Gebiete liegenden landwirtschaftlichen Flächen bestehen nach § 13a DüV strengere Anforderungen für die Düngung aus Gründen des Grundwasserschutzes. Die Maßnahmen sind notwendig, um die Ziele nach EG-Wasserrahmenrichtlinie und Nitratrichtlinie hinsichtlich der Nitratbelastung des Grundwassers zu erreichen und auf Dauer einzuhalten. Die Ausweisung dieser "roten Gebiete" mit Stand 01/2024 erfolgte durch das LANUV NRW nach den Vorgaben der Allgemeinen Verwaltungsvorschrift zur Ausweisung von mit Nitrat belasteten und eutrophierten Gebieten (AVV GeA) vom 10.08.2022. Grundlage für die Ausweisung sind die Grundwassermessstellen des Ausweisungsmessnetzes nach § 4 AVV GeA. Dieses Messnetz enthält alle Messstellen des WRRL-Messnetzes Qualität (WRRL-Messstellen) und des EUA-/Nitrat-Messnetzes, sofern sie den Anforderungen nach Anlage 1 AVV GeA entsprechen. Nach § 3 und § 5 AVV GeA muss bei der Ermittlung der Nitratkonzentrationen in Gebieten, in denen denitrifizierende Verhältnisse (Nitratabbau) im Grundwasser vorliegen, gemäß Anlage 2 der Grundwasserverordnung (GrwV) der Nitratgehalt im Grundwasser vor der Denitrifikation nach der bestverfügbaren Methodik berechnet werden. Dieser Wert muss entsprechend - sofern höher – anstelle der Nitratkonzentration berücksichtigt werden. Ausgangsflächen für die Ausweisung sind die Grundwasserkörper nach EG-Wasserrahmenrichtlinie der dritten Zustands- und Trendbewertung, in denen eine Nitratbelastung oder ein anhaltend steigender Nitrattrend aktuell besteht (Datengrundlage WRRL-Messstellen des 3. Monitoringzyklus 2013-2018). Zusätzlich müssen Grundwasserkörper (GWK) berücksichtigt werden, innerhalb derer eine Messstelle des Ausweisungsmessnetzes mit landwirtschaftlichem Nutzungseinfluss eine Überschreitung des Nitratschwellenwertes oder einen steigenden Nitrattrend oder unter Berücksichtigung der Denitrifikation (s.o.) eine Überschreitung des Nitratschwellenwertes aufweist. Im nächsten Schritt erfolgt innerhalb dieser betroffenen GWK eine Abgrenzung zwischen belasteten und unbelasteten Teilgebieten (immissionsbasierte Abgrenzung). Dazu werden neben den an den Messstellen des Ausweisungsmessnetzes gemessenen Nitratkonzentrationen (2016-2019) hydrogeologische, hydraulische oder hydrogeologische und hydraulische Kriterien auf Grundlage von Grundwassergleichenkarten, einer modellierten Grundwasseroberfläche des Landes, und hydrogeologischen Karten verwendet. Die so abgegrenzten belasteten Teilgebiete werden als mit Nitrat belastete Gebiete nach § 13a DüV ausgewiesen. Sofern ein Anteil von mindestens 20 Prozent einer landwirtschaftlichen Referenzparzelle (in NRW: Feldblock) innerhalb eines belasteten Gebiets liegt, wird entsprechend § 7 AVV GeA deren Gesamtfläche den mit Nitrat belasteten Gebieten zugerechnet. Zur Klärung der Betroffenheit der einzelnen landwirtschaftlichen Flächen ab 01.01.2024 dient das Thema "Betroffene Feldblöcke (Stand: 21.09.2023) innerhalb der mit Nitrat belasteten Gebiete (01/2024)".

Potenzielle Nitratausträge in kg N/(ha*a) nach § 8 AVV GeA der Referenzparzellen in NRW, Stand 01/2022

Dargestellt wird der aktuelle landwirtschaftliche N-Bilanzüberschuss in kg N/(ha*a) als 4-Jahresmittelwert des Zeitraums 2016-2019 pro Referenzparzelle. Datengrundlage sind die nach Anlage 4 AVV GeA durch den DLWK ermittelten landwirtschaftlichen N-Bilanzüberschüsse pro Gemeinde aus dem Zeitraum 2016-2019 (arithmetischer Mittelwert). Die Umrechnung der N-Bilanzüberschüsse pro Gemeinde auf die landwirtschaftlichen Nutzungsflächen im Modellraster (100 x 100 m) des hydrologischen Stoffeintragsmodelles GROWA+ NRW 2021 erfolgt entsprechend der Schnittstelle RAUMIS / mGROWA-DENUZ-WEKU (s. Anlage 4) durch das LANUV NRW. Die auf diese Weise ermittelten aktuellen N-Salden (2016-2019) pro Referenzparzelle werden pro Feldblock gemäß Feldblockstatistik NRW 2021 ausgegeben. Der Datensatz enthält die Feldblöcke gemäß Feldblockstatistik NRW 2021 als Polygone (Feature in geodatabase „GLDN-Potenzielle Nitrataustraege-nach-Par-8-AVV-GeA_EPSG25832_Geodatabase.gdb“ bzw. shape „GLDN-Potenzielle_Nitrataustraege-nach-Par-8-AVV-GeA_EPSG25832“)

Ausweisungsmessnetz zu den mit Nitrat belasteten Gebieten nach § 13a DüV (12/2022) und gemäß § 4 AVV GeA

Die Excel-Tabelle listet alle Grundwassergütemessstellen des WRRL- und EUA- /Nitratmessnetzes NRW, die für die Ausweisung der mit Nitrat belasteten "roten" Gebiete und zur immissionsbasierten Abgrenzung belasteter / unbelasteter Teilgebiete innerhalb der betroffenen Grundwasserkörper herangezogen worden sind (Stand: 12/2022). Messstellen ohne landwirtschaftlichen Einfluss, die eine Nitrat- oder Nitrateintragskonzentration oberhalb des Grundwasserschwellenwertes oder einen steigenden Nitrattrend aufweisen, sind nicht in der Tabelle enthalten, da sie gemäß AVV GeA bei der Gebietsausweisung keine Berücksichtigung finden. Als Angaben enthält das Tabellenblatt: - 9-stellige amtliche Messstellennummer und Name der Messstelle - Gemeinde und Kreis in der bzw. dem die Messstelle liegt - Grundwasserkörper (ID und Name), dem die Messstelle beim Monitoring zugeordnet ist - Lagekoordinaten (aus Datenschutzgründen unterbleiben die beiden letzten Stellen) - dominierender Landnutzungseinfluss im Zustromgebiet der Messstelle - Information, ob ein anhaltend steigender Nitrattrend aktuell im Zeitraum 2009-2018 gemäß GrwV an der Messstelle vorliegt (ja/nein) und ob gleichzeitig ein Nitratwert > 37,5 mg/l vorliegt - Mittelwert der Maximalwerte MWMxJW1619 (Nitrat; mg/l) der Jahre 2016-2019 zu der Messstelle - Nitrateintragskonzentration (mg/l) im Zeitraum 2016-2019, soweit vorhanden (bei mehreren Messungen wird der Mittelwert verwendet). Grundlage sind Messungen des Parameters „Exzess-N2 (umgerechnet in Nitrat in mg/L)“ und die „Nitratkonzentration“ als Summenwert aus jeweils derselben Grundwasserprobe. Die Daten stehen in ELWAS-web. Die Nitrateintragskonzentration entspricht der Nitratkonzentration vor Denitrifikation im Grundwasser. Der Exzess-N2 (durch Nitratabbau im Überschuss gebildetes N2) wird mit der N2/Ar-Methode bestimmt. - Maßgeblicher Wert, aus welchem die Information abzuleiten ist, ob bei der Abgrenzung belasteter / unbelastete Teilgebiete MWMxJW1619 oder Nitrateintragskonzentration ausschlaggebend ist. - Information, ob die Messstelle für die Ausweisung „roter Feldblöcke“ relevant ist oder nicht. Dies ist der Fall bei landwirtschaftlich beeinflussten Messstellen, bei denen der Nitratwert (MWMxJW1619) oder die Nitrateintragskonzentration größer als 50 mg/l ist, sowie bei landwirtschaftlich beeinflussten Messstellen, bei denen ein steigender Nitrattrend vorliegt und der Nitratwert (MWMxJW1619) 37,5 mg/l oder größer ist. In der Excel-Datei sind neben der Datentabelle (Tabellenblatt „AWMN_2022_11“) ein Tabellenblatt zur Erläuterung der Attribute (Tabellenblatt „Dateninformation“) sowie ein Tabellenblatt mit Informationen zu den Grundwasserkörpern (Tabellenblatt „GWK-Tabelle“) enthalten.

Immissionsbasierte Abgrenzung nach § 5 AVV GeA: Teilgebiete der GWK

Teilgebiete der GWK bei der immissionsbasierten Abgrenzung nach § 5 AVV GeA. Die Teilgebiete wurden nach § 5 AVV GeA auf Basis hydrogeologischer und/oder hydraulischer Grenzen abgeleitet.

Immissionsbasierte Abgrenzung nach § 5 AVV GeA (12/2022)

Dokumentation Immissionsbasierte Abgrenzung („Binnendifferenzierung“) nach § 5 AVV GeA: Unterteilung der nach § 3 AVV GeA betroffenen GWK in hydraulisch bzw. hydrogeologisch abgrenzbare Teilgebiete, Stand 12/2022: Dokumentation als pdf-Dokument In der Dokumentation ist eine Beschreibung der bei der Abgrenzung verwendeten Datengrundlagen und Methodik vorangestellt. Nachfolgend wird für jeden einzelnen Grundwasserkörper die Abgrenzung in belastete / unbelastete Teilgebiete dokumentiert. Anhand dieser Dokumentationen kann die Abgrenzung innerhalb der GWK anhand der verwendeten hydraulischen bzw. hydrogeologischen Kriterien und anhand der ausweisungsrelevanten Grundwassermessstellen hinsichtlich ihrer räumlichen Lage innerhalb der GWK nachvollzogen werden. Die GWK sind dabei nach ihrer ID sortiert.

Mittlere jährliche Grundwasserneubildung von Deutschland 1:1.000.000 (GWN1000) (WMS)

Die Karte stellt die mittlere jährliche Grundwasserneubildung in Deutschland für den Zeitraum 1961 – 1990 als Rasterdarstellung in einer Zellweite von 1 x 1 km dar. Dazu wurde ein mehrstufiges Regressionsverfahren entwickelt (Neumann, J. 2005). In einem ersten Schritt wurde der Baseflow-Index (BFI = Basisabfluss / Gesamtabfluss) als Regressionszielgröße in Abhängigkeit von Hangneigung, Gewässernetzdichte, Bodenbedeckung, nutzbarerer Feldkapazität, Grundwasserflurabstand sowie vom Anteil des Direktabflusses am Gesamtabfluss ermittelt. Darauf aufbauend wurden zwei unterschiedliche Modellvarianten für die abflussarmen (R 200 mm/a) sowie die abflussreichen Regionen (R 200 mm/a) entwickelt. Für R 200 mm/a ergibt sich die Grundwasserneubildung aus der multiplikativen Verknüpfung des rasterbasierten Baseflow-Index mit dem flächendifferenzierten Gesamtabfluss nach BAGLUVA. Für die höheren Werte R 200 mm/a wurde eine zweite Regressionsgleichung formuliert, die neben dem Baseflow-Index auch den BAGLUVA-Gesamtabfluss sowie den Grundwasserflurabstand als weiteren Parameter erfordert.

Treibhausgasemissionen 2015 im zweiten Jahr in Folge leicht gesunken

Energiewende beginnt zu wirken – Emissionen des Verkehrs stagnieren aber weiter 2015 wurden in Deutschland insgesamt 901,9 Millionen Tonnen CO2-Äquivalente ausgestoßen. Das sind 2,3 Millionen Tonnen bzw. 0,3 Prozent weniger als 2014 und 27,9 Prozent weniger im Vergleich zu 1990. Dies zeigen die Berechnungen, die das Umweltbundesamt (UBA) jetzt an die Europäische Kommission übermittelt hat. Die größten Minderungen erzielte mit 11,8 Millionen Tonnen die Energiewirtschaft. UBA-Präsidentin Maria Krautzberger: „Die Energiewende beginnt zu wirken. Immer mehr Strom stammt aus Sonne, Wind oder Wasser und nicht mehr aus Kohle oder Öl. Das zeigt sich in weiter sinkenden Emissionen. Jetzt heißt es aber dranbleiben: Um unser Klima zu schützen und die Klimaziele von Paris zu erreichen, müssen wir schrittweise komplett aus der Kohleverstromung aussteigen.“ Im Verkehrssektor, der hier in die Emissionen des Energiesektors eingerechnet ist, sind die Treibhausgasemissionen dagegen erneut leicht angestiegen. Mit 160,8 Millionen Tonnen wurden in 2015 knapp 0,7 Millionen Tonnen CO 2 -Äquivalente mehr als im Vorjahr emittiert. Verantwortlich für den Anstieg sind gestiegene Fahrleistungen im Straßenverkehr. Damit setzt sich der Trend der letzten Jahre fort. "Die Zahlen zeigen: Nur mit der Elektromobilität haben wir eine Chance, die Emissionen des Verkehrs zu senken", so Krautzberger. Auch in der Landwirtschaft stagniert der ⁠ Klimaschutz ⁠. 2015 sind die Emissionen wieder um etwa 0,5 Prozent gestiegen. Zwar liegen die landwirtschaftlichen Emissionen immer noch um knapp 16 Prozent unter denen des Jahres 1990, haben aber nach anfänglichen Reduktionen zu Beginn des Jahrtausends wieder fast das Niveau des Jahres 2000 erreicht. Hauptursachen der Entwicklung in der Landwirtschaft sind, wie schon im Vorjahr, gestiegene Emissionen aus der Bodenkalkung und Harnstoffdüngung. Im Bereich der industriellen Prozessemissionen bleiben die Treibhausgasemissionen nahezu konstant. Emissionsminderungen von weniger als 1 Million Tonnen CO 2 -Äquivalente in der chemischen und mineralischen Industrie heben sich mit Steigerungen der Emissionen in der Metallindustrie und anderen Industriebereichen nahezu auf. Mit 87,8 Prozent dominierte auch in 2015 Kohlendioxid (CO 2 ) die Treibhausgasemissionen – größtenteils aus der Verbrennung fossiler Energieträger. Es folgen Methan mit 6,2 Prozent sowie Lachgas mit 4,3 Prozent, vor allem aus der Landwirtschaft. Gegenüber 1990 belaufen sich die Emissionsminderungen für Kohlendioxid auf 24,7 Prozent. Methan (CH 4 ) wurde gegenüber 1990 um 53,7 Prozent weniger ausgestoßen, Lachgas (N 2 O) um 39,8 Prozent. Fluorierte Treibhausgase (F-Gase) verursachen insgesamt nur etwa 1,6 Prozent der Treibhausgasemissionen, haben aber zum Teil sehr hohes Treibhauspotenzial. Hier verläuft die Entwicklung weniger einheitlich: In Abhängigkeit von der Einführung neuer Technologien sowie der Verwendung dieser Stoffe als Substitute sanken die Emissionen von Schwefelhexafluorid (SF 6 -) bzw. Fluorkohlenwasserstoffen (FKW) seit 1995 um 44,9 bzw. 87,8 Prozent, wohingegen die Emissionen der halogenierten FKW (H-FKW) seitdem um 38,2 Prozent anstiegen. Die Emissionen des neu zu in die Berichterstattung aufgenommenen fluorierten Gases Stickstofftrifluorid (NF 3 ) stiegen auf niedrigem Niveau seit 1995 um 124,7 Prozent an. Die Änderungen gegenüber der veröffentlichten ersten Schätzung der THG-Emissionen für 2015 (siehe Pressemitteilung 09/2016 vom 17.03.2016 ) gehen auf Aktualisierungen der damals nur sehr begrenzt vorliegenden vorläufigen Berechnungsgrundlagen zurück. Die aktuellen Übersichten der Treibhausgasemissionen 1990 – 2015 finden sie hier .

Mittlere jährliche Grundwasserneubildung von Deutschland 1:1.000.000 (GWN1000)

Die Karte stellt die mittlere jährliche Grundwasserneubildung in Deutschland für den Zeitraum 1961 – 1990 als Rasterdarstellung in einer Zellweite von 1 x 1 km dar. Dazu wurde ein mehrstufiges Regressionsverfahren entwickelt (Neumann, J. 2005). In einem ersten Schritt wurde der Baseflow-Index (BFI = Basisabfluss / Gesamtabfluss) als Regressionszielgröße in Abhängigkeit von Hangneigung, Gewässernetzdichte, Bodenbedeckung, nutzbarerer Feldkapazität, Grundwasserflurabstand sowie vom Anteil des Direktabflusses am Gesamtabfluss ermittelt. Darauf aufbauend wurden zwei unterschiedliche Modellvarianten für die abflussarmen (R < 200 mm/a) sowie die abflussreichen Regionen (R > 200 mm/a) entwickelt. Für R < 200 mm/a ergibt sich die Grundwasserneubildung aus der multiplikativen Verknüpfung des rasterbasierten Baseflow-Index mit dem flächendifferenzierten Gesamtabfluss nach BAGLUVA. Für die höheren Werte R > 200 mm/a wurde eine zweite Regressionsgleichung formuliert, die neben dem Baseflow-Index auch den BAGLUVA-Gesamtabfluss sowie den Grundwasserflurabstand als weiteren Parameter erfordert.

Klimagasemissionen stiegen im Jahr 2016 erneut an

Emissionen des Verkehrssektor höher als 1990 – auch Kohleausstieg nötiger denn je 2016 wurden in Deutschland insgesamt 909,4 Millionen Tonnen CO2-Äquivalente ausgestoßen. Das sind 2,6 Millionen Tonnen mehr als 2015 und die zweite Steigerung in Folge. Dies zeigen Berechnungen, die das Umweltbundesamt (UBA) jetzt an die EU berichtet hat. Die Emissionen des Verkehrs sind erneut angestiegen und liegen mit 166,8 Millionen Tonnen wieder oberhalb der Emissionen des Jahres 1990. Den größten Anteil mit 96 Prozent daran hat der Straßenverkehr, dessen Emissionen um 3,7 Millionen Tonnen angestiegen sind. Grund dafür ist, dass immer mehr Güter auf der Straße transportiert werden. Auch bleibt der Trend zu immer größeren und schwereren Autos ungebrochen. „Wir brauchen ein Umsteuern im Verkehr: Laut Klimaschutzplan der Bundesregierung sollen bis 2030 die Emissionen des Verkehrs um rund 70 Millionen Tonnen sinken. Das kann auch gelingen, wenn die Autos deutlich sparsamer werden und wir eine Quote für Elektroautos bekommen. Der gesetzliche Rahmen stimmt aber nicht. Wir empfehlen der EU daher vor allem, bei Autoneuzulassungen ab 2025 nicht mehr als 75 Gramm/CO2 pro Kilometer im Schnitt der Flotte zu erlauben. Der aktuelle Entwurf der Kommission für CO2-Grenzwerte bei Pkw ist zu wenig ambitioniert.“, sagte UBA-Präsidentin Maria Krautzberger. Die größten ⁠ CO2 ⁠-Minderungen gab es mit 4,6 Millionen Tonnen in der Energiewirtschaft, obwohl die Stromexporte gestiegen sind. Der Energiesektor macht mit 332,1 Millionen Tonnen im Jahr aber immer noch den Großteil der Emissionen aus (36,5 Prozent). „Wenn wir im ⁠ Klimaschutz ⁠ schnell etwas erreichen wollen, dann müssen wir uns um die Kohleverstromung kümmern. Ich rate weiter dazu, Braun- und Steinkohlekraftwerke, die älter als 20 Jahre sind, nur noch mit maximal 4.000 Volllaststunden pro Anlage pro Jahr laufen zu lassen. Zudem sollten mindestens 5 Gigawatt der ältesten und ineffizientesten Braunkohlekraftwerke ganz stillgelegt werden.“, so Krautzberger. “Auch für unsere Klimaziele bis 2030 ist entscheidend, dass die Energiewirtschaft einen großen Teil der Reduktion schultert. Das geht nur, wenn wir schnell mit der Stilllegung von älteren bzw. ineffizienten Braun- und Steinkohlekraftwerken anfangen. Sonst besteht die Gefahr, dass wir nicht nur unsere Klimaziele für 2020 verpassen, sondern auch zum Ende des nächsten Jahrzehnts erneut in Schwierigkeiten kommen.“ In 2016 hat Deutschland seine Emissionen nur um 27,3 Prozent gegenüber 1990 senken können; ursprünglich hatte die Bundesregierung für 2020 eine Minderung von 40 Prozent angestrebt, die voraussichtlich deutlich verfehlt werden wird. Die Emissionen aus der Wärmeversorgung von Gebäuden stiegen witterungsbedingt gegenüber 2015 wieder um 3,6 Millionen Tonnen, da mehr Energie für das Heizen verwendet wurde. Krautzberger: „Bei den Gebäuden gibt es ein enormes Einsparpotential; sei es durch eine effizientere Wärmedämmung, Heizungssanierungen oder mehr erneuerbare Energien.“ In der Landwirtschaft sanken 2016 die Emissionen leicht gegenüber dem Vorjahr auf 65,2 Millionen Tonnen; ausschlaggebend ist ein geringerer Einsatz von mineralischen Düngern. Dagegen sind die Emissionen in der Industrie leicht um 1,4 Prozent angestiegen, insbesondere durch die Zunahme in der Metallindustrie. Emissionen nach Treibhausgasen Mit 88,2 Prozent dominierte auch 2016 ⁠ Kohlendioxid (CO2) ⁠ die Treibhausgasemissionen – größtenteils aus der Verbrennung fossiler Energieträger. Die übrigen Emissionen verteilen sich auf Methan (CH4) mit 6 Prozent und Lachgas (N2O) mit 4,2 Prozent, dominiert durch die Landwirtschaft. Gegenüber 1990 sanken die Emissionen von Kohlendioxid um 23,9 Prozent, Methan um 54,4 Prozent und Lachgas um 41,1 Prozent. Fluorierte Treibhausgase (F-Gase) verursachen insgesamt nur etwa 1,7 Prozent der Treibhausgasemissionen, haben aber zum Teil sehr hohes Treibhauspotenzial. Hier verläuft die Entwicklung weniger einheitlich: In Abhängigkeit von der Einführung neuer Technologien sowie der Verwendung dieser Stoffe als Substitute sanken die Emissionen von Schwefelhexafluorid (SF6) bzw. Fluorkohlenwasserstoffen (FKW) seit 1995 um 40 bzw. 87,5 Prozent. Die Emissionen der halogenierten FKW (H-FKW) sind seitdem um 31,1 Prozent anstiegen. Die Emissionen von Stickstofftrifluorid (NF3) stiegen auf niedrigem Niveau seit 1995 um 110,7 Prozent an, gehen aber seit 2010 wieder sehr schnell zurück.

1 2 3 4 5157 158 159