API src

Found 611 results.

Related terms

Langjährige Entwicklung der Luftqualität 2022

Emissionen Für die detaillierte und lückenlose Darstellung der langfristigen Entwicklung der Emissionen in Berlin, werden in einer Karte die Erhebungen der Emissionskataster seit 1989 ausgewertet. Bei der Emissionsberechnung kam es im Jahr 2015 zu einer grundlegend erweiterten Auswertung aller relevanten Verursacher, die den Vergleich der Emissionsmengen zu Vorjahren für die Emissionen aus Heizungsanlagen nur bedingt zulässt. So wurde zur Berechnung der Emissionen 2015 ein neues Emissionsgutachten erstellt, das zusätzlich zu den in den Vorjahren durchgeführten Auswertungen der statistischen Kennzahlen eine Befragung und eine Berücksichtigung einer Vielzahl von Akteuren beinhaltet. Der Abschlussbericht ist auf den Seiten der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt verfügbar. Die einzelnen Kartenebenen der Karte 03.12.2 Langjährige Entwicklung der Luftqualität – Emissionen , getrennt nach Schadstoffen und Verursachergruppen, verdeutlichen, in welchen Bereichen Berlins welche Verursacher den größten Anteil an der Emission der Stoffe haben. Auswertung der Langjährigen Entwicklung der Luftqualität Seit 1989 konnten alle Emissionen stark reduziert werden, mit Rückgängen zwischen 73 % (Stickoxide) und 96 % (Schwefeldioxid). Die PM 10 -Emissionen sind in diesem Zeitraum um 86 % zurückgegangen. Die Gesamtzahl der genehmigungsbedürftigen Industrieanlagen hat in Berlin seit 1989 deutlich abgenommen, da aufgrund der geänderten politischen und wirtschaftlichen Lage viele Anlagen stillgelegt wurden. Außerdem haben sich die rechtlichen Regelungen für die Genehmigungspflicht zahlreicher kleiner Anlagen geändert. Auch hierdurch erklärt sich ein Rückgang. Die Emissionen dieser Anlagen werden seitdem den Quellgruppen Hausbrand oder Kleingewerbe zugeordnet. Die Branchen Wärme- und Energieerzeugung sowie Nahrungs- und Genussmittelindustrie sind die Hauptemittenten von NO x -Emissionen aus erklärungspflichtigen Anlagen (Industrie) im Land Berlin (vgl. AVISO 2016, S.23). Im Bereich Hausbrand / Gebäudeheizung , der nicht nur Wohnungen, sondern auch Kleingewerbe wie Praxen, Anwaltskanzleien etc. enthält, konnten durch großflächige Erweiterungen der Versorgung mit leitungsgebundenen Energieträgern zu Lasten der früher bestimmenden Braunkohle eindrucksvolle Emissionsminderungen erreicht werden. Insbesondere beim früheren Leitparameter für Luftbelastung, dem Schwefeldioxid (SO 2 ), wird dies deutlich. Die vom Land Berlin seit 1990 beispielhaft geförderte energetische Sanierung der Altbaubestände hat dazu wesentlich beigetragen. Bezüglich der räumlichen Verteilungsstruktur der Emissionen aus nicht genehmigungsbedürftigen Feuerungsanlagen (Hausbrand, Kleingewerbe) zeigt sich für die Schadstoffe NO x , PM 10 und PM 2,5 ein ähnliches Bild: Die höchsten Emissionsdichten treten im Zentrum von Berlin auf und zwar in den Bezirken Charlottenburg-Wilmersdorf, Tempelhof-Schöneberg, Friedrichshain-Kreuzberg und Pankow (vgl. AVISO 2016, S.81). Der Verkehr ist mittlerweile der Hauptverursacher der Stickoxide. Der Straßenverkehr hatte 2015 einen Anteil von mehr als 37 % an den Stickoxidemissionen in Berlin, während alle Industrieanlagen zusammen knapp 36 % der Gesamtmenge emittierten. Da die Schadstoffe des Straßenverkehrs bodennah (oder “Nasen-nah”) in die Atmosphäre gelangen, tragen sie in hohem Maße zur Luftbelastung bei. (weitere Informationen: Stickstoffdioxid ). Die gesundheitlich bedenklichen Feinstaubemissionen aus dem Auspuff der Kraftfahrzeuge wurden zwischen 1989 bis 2015 um mehr als 90 % vermindert. Ein Grund dafür war die Einführung der Umweltzone und die darin verankerte Festlegung der Partikelfilter, welche eine Reduzierung der Rußpartikel ergab. Dies stimmt sehr gut mit den Messungen des in den Straßenschluchten erfassten Dieselrußes – dem Hauptbestandteil der Partikelemission aus dem Auspuff – überein: Die gemessene Ruß-Konzentration ist in der Frankfurter Allee im Berliner Bezirk Friedrichshain an der Messstelle MC174 des Berliner Luftgütemessnetzes BLUME innerhalb des Zeitraumes 2000-2015 um mehr als 50 % gesunken (vgl. auch Auswertungen zur Karte 03.12.1, Station MC174 ). Da sich die Feinstaubemissionen durch Abrieb und Aufwirbelung des Straßenverkehrs in diesen 20 Jahren um weit weniger vermindert haben als die Emissionen durch Verbrennungsprozesse, ist der Straßenverkehr nach den “sonstigen Quellen” weiterhin der Hauptverursacher von Feinstaub in Berlin. Der Straßenverkehr einschließlich Abrieb und Aufwirbelung hatte 2015 einen Anteil von 24 % an den PM 10 -Emissionen in Berlin, während die sonstigen Quellen 50 % verursachten (bei PM 2,5 lag das Verhältnis bei 26 % zu 45 %). Vergleichsweise hoch sind die vom Kraftfahrzeugverkehr verursachten Belastungen in der Innenstadt, wo auf etwa 100 km 2 Fläche über 1 Mio. Menschen leben. Vor allem hier werden unter gleichbleibenden Bedingungen Flächenbedarf und Flächenkonkurrenz eines wachsenden Kfz-Verkehrs zunehmen. Gerade der Straßengüterverkehr wird hier (unter gleichbleibenden Bedingungen) auf zunehmende Kapazitätsengpässe im Straßenraum stoßen. Informationen zu den einzelnen Emissionen finden Sie hier An allen Messstationen werden Stickstoffmonoxid und Stickstoffdioxid (mit dem Chemolumineszenzverfahren), an zwölf Stationen Partikel der PM 10 - und PM 2,5 -Fraktion (durch Messung der Streuung von Licht an Staubpartikeln), an 8 Stationen Ozon (durch Absorption von UV-Strahlung), an zwei Stationen Kohlenmonoxid (durch Absorption von Infrarotstrahlung) und an zwei Stationen Benzol (durch Gaschromatographie) gemessen. Die Messung von SO 2 mittels des Referenzverfahrens wurde zum 01.06.2020 eingestellt, da die SO 2 -Konzentration in den letzte 30 Jahren stark gesunken ist und die Messwerte der letzten Jahre zum Großteil die Nachweisgrenze der Referenzmesstechnik unterschritten haben. Gemäß 39. BImSchV besteht daher keine Messverpflichtung mehr für SO 2 . An zwei bzw. vier Messstellen werden in der PM 10 -Fraktion zusätzlich Schwermetalle und Benzo(a)pyren bestimmt. Die Stationen sind so im Stadtgebiet verteilt, dass verschiedene räumliche Einflussfaktoren ermittelt werden können. Von den 17 Stationen, an denen Luftschadstoffe für die Beurteilung für die Luftqualität gemessen werden, liegen sieben an stark befahrenen Straßen, fünf im innerstädtischen Hintergrund (Wohn- und Gewerbegebieten) und fünf im Stadtrand- und Waldbereich. An der Autobahn A100 werden zudem Sondermessungen durchgeführt, die nicht der Grenzwertüberwachung dienen. Die Proben, welche an den 23 RUBIS-Standorten gesammelt werden, werten die Mitarbeitenden des Berliner Luftgütemessnetzes im Labor aus und ermitteln die Benzol- und Rußkonzentrationen. Zusätzlich werden Passivsammler an insgesamt mehr als 30 Standorten zur Bestimmung von Stickstoffdioxid und teilweise Stickstoffoxiden eingesetzt. Dabei werden Proben über eine Probenahmezeit von 14 Tagen gesammelt, die dann im Labor analysiert werden. Diese manuell erzeugten Labordaten werden wegen des analysebedingten zeitlichen Versatzes zwischen Messung und Erhalt der Ergebnisse und ihrer geringen zeitlichen Auflösung erst nach Abschluss aller qualitätssichernden Maßnahmen als Jahresdatensatz (inkl. 2-Wochen-Werte, abrufbar im Luftdaten-Archiv ) und als Jahresmittelwert in den Jahresberichten veröffentlicht. Die automatisch in den Messcontainern ermittelten Messwerte des Vortages werden werktäglich gegen 11 Uhr an einige Zeitungen, Radio- und Fernsehsender zur Veröffentlichung übermittelt. Parallel dazu werden diese Daten stündlich bzw. täglich ins Internet eingespeist und können dort z.B. als Tageswerte des BLUME-Messnetzes ) abgerufen werden. Bei erhöhten Ozonkonzentrationen im Stadtgebiet wird die Bevölkerung auch durch einige Rundfunksender informiert. Auf den Internetauftritt „Berliner Luftgütemessnetz“ mit seinem umfassenden Angebot an Daten und Bewertungen wurde bereits hingewiesen. Monats- und Jahresberichte , die neben einer Bewertung des vorangegangenen Beobachtungs¬zeitraumes auch Standorttabellen der Messstationen sowie einen Überblick über Grenz- und Zielwerte enthalten, sind ebenfalls online verfügbar. Die Ergebnisse der Messungen der vergangenen Jahre lassen u.a. folgende Schlussfolgerungen zu: Gegenüber den 70er und 80er Jahren konnte die Luftbelastung bei den meisten Luftschadstoffen um ein Vielfaches reduziert werden. So überschreiten die Schwefeldioxidkonzentrationen (Rückgang > 90 %) heute in keinem Fall mehr die festgelegten EU-Immissionswerte. Hinsichtlich PM 10 hat sich die Situation deutlich gegenüber den Jahren am Anfang dieses Jahrhunderts verbessert. Allerdings ist die Belastung mit PM 10 sehr stark von den meteorologischen Ausbreitungsbedingungen abhängig. So führen insbesondere winterliche schwachwindige Hochdruckwetterlagen mit südlichen bis östlichen Winden zu einer hohen Anreicherung der Luft im Berliner Raum mit PM 10 -Partikeln, die teilweise durch Ferntransport nach Berlin gelangen, teilweise auch in innerstädtischen Quellen, vor allem dem Straßenverkehr und im Hausbrand, ihre Herkunft haben. In den Jahren mit schlechteren Austauschbedingungen wie 2009-2011 und auch 2014 lagen die PM 10 -Jahresmittelwerte etwas höher, dagegen in den Jahren mit besseren Austauschbedingungen wie 2007 und 2008 sowie 2012, 2013, 2015, 2016, 2017 und 2019 entsprechend niedriger. Die an den Stationen des automatischen Messnetzes ermittelten PM 10 -Jahresmittelwerte für 2022 lagen am Stadtrand bei 15-16 µg/m³, im innerstädtischen Hintergrund bei 17-19 µg/m³ und an Schwerpunkten des Straßenverkehrs bei 20-24 µg/m³. Damit wurde der Grenzwert für das Jahresmittel auch an der höchst belasteten Messstelle nicht überschritten. Auch der Kurzzeitgrenzwert für PM 10 (das Tagesmittel darf den Wert von 50 µg/m³ im Jahr nur 35 mal pro Messstation überschreiten) wurde im Jahr 2022 an keiner Messstelle überschritten. Auch für NO 2 konnte der seit 2010 einzuhaltende Jahresmittel-Grenzwert der 39. BImSchV (40 µg/m³) wie bereits im Vorjahr berlinweit eingehalten werden. An den automatischen Messstationen lag der Jahresmittelwert im Jahr 2022 an Straßen zwischen 20und 33 µg/m³. Auch an allen Passivsammlerstandorten, die die Standortkriterien nach 39. BImSchV erfüllen, wurde der Grenzwert eingehalten. Zielwertüberschreitungen für das bodennahe Ozon wurden an keiner Station im Jahr 2022 festgestellt. EU-weit gilt ein Zielwert von höchstens 25 Tagen pro Kalenderjahr mit einem maximalen 8-Stundenwert über 120 µg/m³, gemittelt über die letzten 3 Jahre. Seit dem 01.01.2010 ist dieser Zielwert soweit wie möglich einzuhalten. Verbesserungen der Luftwerte hängen mit vielen Komponenten zusammen. Die Deindustrialisierung Berlins und die Modernisierung der Anlagen, der Einsatz von Katalysatoren in Fahrzeugen und die Umstellung der Beheizung auf emissionsärmere Brennstoffe haben ihre Wirkung gezeigt. Eine detaillierte Übersicht und Zusammenstellung über die Qualität der Berliner Luft wird online zur Verfügung gestellt. Da Immissionen aber auch überregional und durch das Wettergeschehen beeinflusst werden, kann die Ursachenanalyse nicht nur lokal stattfinden, sondern muss auch dem Eintrag von Schadstoffen von außen, bis hin zum grenzüberschreitenden Transport nachgehen (vgl. Zweite Fortschreibung des Luftreinhalteplans ). In der vorliegenden Karte 03.12.1 Langjährige Entwicklung der Luftqualität – Immissionen wurden alle mit den genannten Messprogrammen in den letzten mehr als 45 Jahren ermittelten Daten zusammengestellt und statistisch-graphisch über die Messjahre aufbereitet. Über die räumliche Verteilung aktueller und ehemaliger Messstandorte lassen sich die einzelnen Sachdaten Adresse Art der Station Umgebungsbeschreibung (einschl. Fotos) Koordinaten Messparameter Messzeitraum Messwerte (als Graphik und EXCEL-Tabellen) abrufen. Die Einteilung der Stationen erfolgte in Verkehrs-, innerstädtischer Hintergrund-, Industrie-, Stadtrand- und Meteorologiemessstationen. Es sind insgesamt 201 Messstandorte dargestellt. 58 Stationen waren davon 2022 in Betrieb (17 BLUME-Messcontainer, eine Sondermessstation, 23 RUBIS-Messpunkte sowie 17 weitere Passivsammler-Standorte). Bei der graphischen Darstellung der Entwicklung der Parameter Gesamtstaub, Partikel (PM 10 ), Schwefeldioxid (SO 2 ), Stickstoffdioxid (NO 2 ), Stickstoffmonoxid (NO), Kohlenmonoxid (CO), Benzol und Ozon (O 3 ) wurde auf die folgenden Grenzwerte Bezug genommen (sie dienen – wenn nicht anders erläutert – dem Gesundheitsschutz): Für PM 2,5 ist ein Indikator für die durchschnittliche Exposition der Bevölkerung im städtischen Hintergrund (Average Exposure Indicator = AEI) definiert. Dieser wird für jeden EU-Mitgliedsstaat gesondert als gleitender Jahresmittelwert über drei Jahre aus den Werten der entsprechenden PM 2,5 -Messstellen ermittelt. Der AEI für das Referenzjahr 2010 ist als Mittelwert der Jahre 2008 bis 2010 definiert. Er betrug für das gesamte Bundesgebiet 16,4 µg/m³. Anhand des AEI 2010 ist ein nationales Reduktionsziel für PM 2,5 bis zum Jahr 2020 nach der 39. BImSchV von 15 % festgelegt. Deshalb darf der AEI seit 2020 nicht mehr als 13,9 µg/m³ betragen. Der AEI 2021 (Mittelwert der Jahre 2019 bis 2021) beträgt für Berlin 12,5 µg/m³. Weitere gesetzlich festgelegte Grenz- und Zielwerte für die Luftqualität bietet diese Übersicht .

Beschreibung des Messnetzes

Die Luftverunreinigung Berlins wird seit 1975 durch das Berliner Luftgüte-Messnetz (BLUME) kontinuierlich gemessen. Dabei lag der Schwerpunkt der Messungen ursprünglich bei Schwefeldioxid. Im Laufe der Zeit wurde die Messung weiterer Schadstoffe aufgenommen. Derzeit besteht das Messnetz aus 17 ortsfesten Messstationen für Luftschadstoffe, einer Sondermessstelle und einer meteorologischen Station. Von den einzelnen Stationen werden die 5-Minuten-Werte jedes Schadstoffes zur Messzentrale in der Brückenstraße (Mitte) übertragen und daraus die Stunden- und Tageswerte als Basis für die weitere Auswertung berechnet. Die ermittelten Daten dienen der Berechnung von Kennwerten der Luftverschmutzung zur Beurteilung der Luftqualität anhand von Grenz- und Zielwerten der 39. BImSchV , der Ermittlung der Schadstoffbelastung für Genehmigungsverfahren (nach TA Luft), der Ursachenermittlung der Luftverunreinigung, der Verfolgung der Wirksamkeit von Maßnahmen zur Luftreinhaltung und der Informationen der Öffentlichkeit. Derzeit betreibt das Berliner Luftgütemessnetz 17 Messcontainer zur Überwachung der Luftqualität gemäß der 39. BImSchV , von denen sieben verkehrsnah und jeweils fünf in innerstädtischen Wohngebieten und am Stadtrand platziert sind. An allen Messcontainern wurden Stickstoffmonoxid und Stickstoffdioxid (NOx als Summe von NO und NO 2 mit dem Chemolumineszenzverfahren), an zwölf Stationen Partikel-PM 10 (Partikel mit einem Teilchendurchmesser bis zu 10 Mikrometer durch Streulichtmessung), an acht Stationen Ozon (O 3 durch Absorption von UV-Strahlung), an zwei Stationen Kohlenmonoxid (CO durch Absorption von Infrarotstrahlung) und an zwei Stationen Benzol (C6H6 durch Gaschromatographie) gemessen. Neben dem automatischen Messverfahren zur PM 10 -Messung werden in sechs Messcontainern auch Probenahmegeräte zur Bestimmung von PM 10 und/oder PM 2,5 mit dem gravimetrischen Referenzverfahren gemäß EU-Luftqualitätsrichtlinie 2008/50/EG betrieben. In einem Teil dieser Partikelproben werden Benzo(a)pyren, Blei, Arsen, Cadmium und Nickel analysiert und mit den jeweiligen Grenz- bzw. Zielwerten verglichen. Außerdem erfolgen Kohlenstoff- und Ionenanalysen. Das Containermessnetz wird in Berlin bereits seit Mitte der 1990er Jahre durch kleine, an Straßenlaternen befestigte aktive Probenahmegeräte (RUBIS) und Passivsammler ergänzt. Sie sind insbesondere für die Erfassung der Belastung aus dem Straßenverkehr eine wichtige Ergänzung der Datengrundlage, weil Emissionen aus dem Verkehrssektor für die meisten Schadstoffe einen erheblichen Teil zur Immissionsbelastung beitragen, in engeren Straßen der Innenstadt aber schon aus Platzgründen keine großen Messcontainer betrieben werden können. Mit “Ruß- und Benzol-Immissionssammlern”(RUBIS) und Passivsammlern für Stickstoffdioxid und Stickoxide derzeit an 23 zusätzlichen Stellen im Berliner Stadtgebiet die Belastung mit EC und OC und an 42 zusätzlichen Stellen die Belastung mit Stickoxiden in zweiwöchiger Auflösung ermittelt. Insbesondere für Stickstoffdioxid sind die an diesen Stellen ermittelten Jahresmittelwerte eine wichtige zusätzliche Beurteilungsgrundlage. Die Messungen werden durch Modellrechnungen für alle Straßenabschnitte ergänzt, um die Belastung im gesamten Berliner Stadtgebiet einzuschätzen. 13 der 36 Stickstoffdioxid-Passivsammler wurden Ende 2018 in Betrieb genommen und lieferten 2019 erstmals gültige Jahresmittelwerte. Werktäglich werden gegen 12 Uhr die Messwerte des Vortags an einige Zeitungen, Radio- und Fernsehstationen zur Veröffentlichung übermittelt. Parallel dazu werden die Daten auch ins Internet eingespeist und können im Luftdatenportal abgerufen werden. Monats- und Jahresberichte im pdf-Format bieten wir hier zum Download an. Diese können in Papierform auch unter blume@senumvk.berlin.de angefordert werden.

Decomposability versus detectability: First validation of TED-GC/MS for microplastic detection in different environmental matrices

A fast method for microplastic detection is thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS), which uses polymer-specific thermal decomposition products as marker compounds to determine polymer mass contents in environmental samples. So far, matrix impacts of different environmental matrices on TED-GC/MS performance had not yet been assessed systematically. Therefore, three solid freshwater matrices representing different aquatic bodies with varying organic matter contents were spiked with a total of eight polymers. Additionally, for the first time, the two biodegradable polymers polybutylene adipate terephthalate (PBAT) and polylactide (PLA) were analysed using TED-GC/MS. The methodological focus of this work was on detectability, quality of signal formation as well as realisation of quantification procedures and determination of the limit of detection (LOD) values. Overall, TED-GC/MS allowed the unambiguous detection of the environmentally most relevant polymers analysed, even at low mass contents: 0.02wt% for polystyrene (PS), 0.04wt% for the tyre component styrene butadiene rubber (SBR) and 0.2wt% for polypropylene (PP), polyethylene (PE) and PBAT. Further, all obtained LOD values were increased in all matrices compared to the neat polymer without matrix. The LOD of the standard polymers were increased similarly (PS: 0.21-0.34 (micro)g, SBR: 0.27-0.38 (micro)g, PP: 0.32-0.36 (micro)g, PMMA: 0.64-1.30 (micro)g, PET: 0.90-1.37 (micro)g, PE: 3.80-6.99 (micro)g) and their decompositions by radical scission processes were not significantly influenced by the matrices. In contrast, matrix-specific LOD increases of both biodegradable polymers PBAT (LOD: 1.41-7.18 (micro)g) and PLA (0.84-20.46 (micro)g) were observed, probably due to their hetero-functional character and interactions with the matrices. In conclusion, the TED-GC/MS performance is not solely determined by the type of the polymers but also by the composition of the matrix. © 2023 Wiley VCH GmbH

Bewertung und Quantifizierung von Auswirkungen mariner Abfälle auf Meeresorganismen (gemäß Deskriptor 10 MSRL): Mikroplastik in pelagischen und demersalen Fischen in Nordsee (Niedersächsisches Wattenmeer) und Ostsee (Wismar-Bucht / nördl. Rügen)

Pelagische und demersale Fischarten aus Nord-und Ostsee wurden mikroskopisch auf auffällige Partikel und durch Pyrolyse Gaschromatographie Massenspektrometrie auf insgesamt 9 Kunststoffe (Polyethylen (PE), Polypropylen (PP), Polystyrol (PS), Polyvinylchlorid (PVC), Polyethylenterephthalat (PET), Polymethymethacrylat (PMMA), Polycarbonat (PC), Polyurethan (PUR), Polyamid (PA)) qualitativ und quantitativ untersucht. Dies erfolgte nach enzymatisch, chemisch-oxidativer Aufarbeitung und in einigen Fällen einer Dichtetrennung. Im Mittel wurde in 69% der untersuchen Fischproben aus Nord- und Ostsee Mikroplastik <1mm (S-MP) nachgewiesen. Die Fische der Ostsee enthielten tendenziell häufiger S-MP und eine größere Vielfalt an Kunststoffarten. Mit Ausnahme von PP wurden alle Kunststoffarten (s.o.) nachgewiesen. Als solche erkennbare, größere Kunststoffpartikel (> 1mm) fehlten vollständig. Es gab keinen pauschalen Trend zwischen der Häufigkeit der S-MP-Aufnahme, den nachgewiesenen, einzelnen Kunststoffarten und dem pelagischen oder benthischen Habitat der jeweiligen Fischarten. Menge und Qualität von S-MP scheinen mit der Art und Qualität der Nahrungsaufnahme der einzelnen Spezies zu variieren. Das S-MP Vorkommen ist wahrscheinlich stärker von lokalen Strömungs- und Sedimentationsbedingungen und physikalischen Kräften abhängig als von der Dichte der Kunststoffe. Eine semi-quantitative Abschätzung ergibt für Fische der Ostsee S-MP-Gehalte unterhalb von 20 (mikro)g in denen der Nordsee unterhalb von 15 (mikro)g/Probe. Die Mengen einzelner Kunststoffarten liegen vielfach unterhalb des derzeitigen Kalibrierbereiches. Die im Rahmen dieser Pilot-Studie untersuchten Fischarten eignen sich grundsätzlich, als vergleichsweise leicht verfügbare Indikatororganismen, zur Erfassung der Belastung ihres Lebensraums mit Mikroplastik. Sie sind von lokaler Aussagekraft und bei Langzeitstudien ein Trendindikator für die MP-Belastung. Eine Einschätzung zum Belastungszustand von Nord-und Ostseefischen mit MP sowie der potentiellen Gefährdung des Menschen durch Verzehr von Fischen wird gegeben. Quelle: Forschungsbericht

Untersuchungsverfahren von Mikroplastikgehalten im Wasser für Praxis und Wissenschaft

Zielsetzung des vom Bundesministerium für Bildung und Forschung geförderten Projektes RUSEKU (Repräsentative Untersuchungsstrategien für ein integratives Systemverständnis von spezifischen Einträgen von Kunststoffen in die Umwelt) war es, repräsentative Untersuchungsstrategien für die Detektion von Mikroplastik mittels TED GC/MS in wässerigen Medien zu ermitteln. Dabei wurden verschiedene Probenahmekonzepte und -verfahren für unterschiedliche Fallgestaltungen und Fragestellungen untersucht, sowie neue Filtersysteme entwickelt. Bei der Detektion der Partikel lag der Fokus auf der Anwendung und Weiterentwicklung der ThermoExtraktion/Desorption-Gaschromatographie-Massenspektrometrie (TED-GC/MS) zur Bestimmung von Mikroplastikgehalten. Anwendung fanden die Methoden bei der Beprobung von Flaschenwasser, Waschmaschinenabläufen, dem urbanen Abwassersystem der Stadt Kaiserslautern, sowie in Oberflächengewässern. © Authors

Two birds with one stone - fast and simultaneous analysis of microplastics

Analysis of microplastic particles in environmental samples needs sophisticated techniques and is time intensive due to sample preparation and detection. Alternatives to the most common (micro-) spectroscopic techniques, Fourier transform infrared and Raman spectroscopy, are thermoanalytical methods, in which specific decomposition products can be analyzed as marker compounds for different kinds of plastic types and mass contents. Thermal extraction desorption gas chromatography-mass spectrometry allows the fast identification and quantification of MP in environmental samples without sample preparation. Whereas to date only the analysis of thermoplastic polymers has been realized, this is the first time that even the analysis of tire wear (TW) content in environmental samples has been possible. Various marker compounds for TW were identified. They include characteristic decomposition products of elastomers, antioxidants, and vulcanization agents. Advantages and drawbacks of these marker substances were evaluated. Environmental samples from street runoff were exemplarily investigated, and the results are presented. © 2018 American Chemical Society.

Fast identification of microplastics in complex environmental samples by a thermal degradation method

In order to determine the relevance of microplastic particles in various environmental media, comprehensive investigations are needed. However, no analytical method exists for fast identification and quantification. At present, optical spectroscopy methods like IR and RAMAN imaging are used. Due to their time consuming procedures and uncertain extrapolation, reliable monitoring is difficult. For analyzing polymers Py-GC-MS is a standard method. However, due to a limited sample amount of about 0.5 mg it is not suited for analysis of complex sample mixtures like environmental samples. Therefore, we developed a new thermoanalytical method as a first step for identifying microplastics in environmental samples. A sample amount of about 20 mg, which assures the homogeneity of the sample, is subjected to complete thermal decomposition. The specific degradation products of the respective polymer are adsorbed on a solid-phase adsorber and subsequently analyzed by thermal desorption gas chromatography mass spectrometry. For certain identification, the specific degradation products for the respective polymer were selected first. Afterwards real environmental samples from the aquatic (three different rivers) and the terrestrial (bio gas plant) systems were screened for microplastics. Mainly polypropylene (PP), polyethylene (PE) and polystyrene (PS) were identified for the samples from the bio gas plant and PE and PS from the rivers. However, this was only the first step and quantification measurements will follow. © 2017 Elsevier Ltd.

Verwaltungsräte informieren sich im LUBW-Labor über das Rheinscreening

Im Anschluss an die von Zahlen, Daten und Fakten dominierte Sitzung am 26.07.2017 informierten sich die Verwaltungsräte über die technisch-naturwissenschaftliche Arbeit der LUBW. Im Labor für Wasser und Boden ließen sich der Verwaltungsratsvorsitzende, Umweltminister Franz Untersteller MdL, und die designierte neue Präsidentin der LUBW, Eva Bell, die Durchführung des Rheinscreenings erläutern. Laborleiterin Dr. Claudia Hornung, ihre Stellvertreterin Diane Fügel und das Laborteam analysieren unter anderem Wasserproben von der LUBW-eigenen Rheinmessstation in Karlsruhe-Maxau für das tägliche Rheinscreening. Vergleichbare Untersuchungen werden am Oberrhein durch die Messstation Weil und flussabwärts in der Gewässergütestation Worms durchgeführt. Die grenzüberschreitende Zusammenarbeit entlang des Rheins ist per Staatsvertrag abgesichert und dient allen internationalen Rheinanliegern. Circa 6.500 Proben verschiedener Messnetze aus ganz Baden-Württemberg durchlaufen alljährlich das Labor für Wasser und Boden. Mehrere hundert Parameter werden mit unterschiedlichsten Analysegeräten untersucht, um gesundheits- und umweltgefährdende Stoffe zu detektieren. Die Bewertung der Analyseergebnisse erfolgt in den Fachreferaten, die für ggf. nötige Maßnahmen die Vollzugsbehörden mit den erforderlichen Datengrundlagen versorgen. Allein für das Rheinscreening wird die Probe mit der Gaschromatographie auf circa 9.000 Stoffe und mit der Flüssigchromatographie auf rund 350 Stoffe untersucht. Die Verwaltungsratsmitglieder zeigten sich von der modernen Ausrüstung und der Messexpertise der LUBW beeindruckt und konnten – angetan mit Schutzkleidung – durch eigenes Erleben im laufenden Betrieb sehen, warum die LUBW alljährlich hohe Investitionen in die Messnetze und Labore tätigt. v. r. n. l.: Abteilungsleiter Werner Altkofer (Messtechnik und Labore) erläutert Minister Franz Untersteller die Probenvorbereitung; Eva Bell zeigt sich sehr interessiert; Diane Fügel und stellvertretender Präsident Burkhard Schneider (beide LUBW); die Verwaltungsratsmitglieder Josef Kreuzberger und Peter Fuhrmann (beide UM). Im Vordergrund: Laborleiterin Dr. Claudia Hornung. Foto: LUBW

Gas chromatography of gas samples of the KTB main hole HB1g

Abstract

Gas chromatography of gas samples of the KTB main hole HB1

Abstract

1 2 3 4 560 61 62