Das Projekt "PV hybrid systems for three remote houses" wird vom Umweltbundesamt gefördert und von Fraunhofer-Gesellschaft FhG, Abteilung für Forschungs- und Budgetplanung durchgeführt. Objective: This project demonstrates three photovoltaic hybrid (wind, Diesel, gas) systems, with continuous AC energy supplied by an inverter. All three sites are far away from the grid. General Information: Three different subsystems at three different sites. A common feature is newly developed indicator of the state of charge of the battery. This indicator allows economic energy management and optimized use of the auxiliary generator. All three subsystems have the same type of special inverter (ISE design) to supply 220 V AC. In the new version of the ISE inverter it is sufficient to have one battery with the full tension of 162 V; the other dc tensions, 84, 42, 24 and 12 V are generated by a DC/DC converter. (Patented system). 1) The Grimmelshofen system, 1.76 kWp, on a private house, a former railroad signal house, has a Diesel/gas auxiliary generator. The PV arrays are mounted on the roof of the house. 2) The Rotwandhaus system, 5 kWp, on a guesthouse in the bavarian Alps near Spitzingsee, has a wind auxiliary generator (20 kWp turbine). The PV arrays are mounted on the roof. 3) The Bognago system, 4.32 kWp, on a site of several isolated guest huts, has a hydro electric generator, 5 kW for the main house supply (household appliances, water pump). This system has also a Diesel/gas auxiliary generator. Nr. of subsystems: 1 + 1 + 1 Power of subsystems: 1.76 + 5.1 + 4.32 kWp Total power: 11 kWp Backup: Diesel (+wind + hydro) Number of modules: about 240 TST (AEG) Module description: AEG PQ 36/45 and Italsolar 36 SL/A Connection: 12 in series Support: On the roof (Rotwandhaus), roof integrated (Langer and Bognago) Max power tracker: none Charge controller: special Battery: HAGEN Batt. (V): 162 (168 Langer) Capacity (Ah): 1 x 75 Ah (OGI) and 1x37.5 Ah (OpzS) at 168 V for Langer house, 400 Ah at 162 V, type Hagen OCSM, for Rotwandhaus, 200 Ah at 162 V, type FIAMM PMF, for Bognago. Inverter: special (ISE design transformer less inverter with DC/DC converter for all three systems, 10 kW. Load description: Household appliances, Dishwater, washing machine, refrigerator, freezer, TV, lights, and water pump. Monitoring: Data logger for 11 main parameters with integrators for mechanical backup. Achievements: The system in the Langer-house works perfectly, satisfying the seasonal needs of the Langer family. The final yield over nine months is 1.3 kWh/(d x kWp) at a reference yield of 3.5 kWh/(d x kWp). The battery and the inverter have both high efficiency. The Rotwandhouse system is operating since September 92. Of the 11.3 MWh totally produced in 1993 3.4 MWh are of pv origin, 2.4 MWh of wind origin and 5.5 MWh are Diesel generated. The final yield for the pv supply was 1.6 kWh/(d x kWp) at a reference yield of 3.8 kWh/(d x kWp). At Bonago, operating since September 1991, the consumption is much higher than expected. The pv systems works correctly, but the motor generator fraction is high. From the whole project many valuable lessons were learned,...
Das Projekt "Windturbine fuer die Produktion von Elektrizitaet (MON 30)" wird vom Umweltbundesamt gefördert und von Messerschmitt-Bölkow-Blohm durchgeführt. Objective: MBB will construct and demonstrate one bladed 30 m diameter, 200 kW wind turbine MON 30 which will be an enlarged version of the FLAIR -8. Innovations consist of the flexible design, hubless single blade rotor, mechanical function of control and safety devices. The wind generator will produce electrical energy at the wind power plant at Wilhelmshaven. The estimated annual yield is 300 MWh. General Information: An enlarged version of FLAIR-8 but with many innovations was constructed and installed by MBB at Wilhelmshaven in FRG. The new MON 30 is a flexible design of a single bladed wind turbine with a diameter of 30 m and nominal power 200 KW. Hubless design with speed and power regulation as well as mechanical safety devices. The components of the wind turbines don t have to take up the full strain resulting from the turbulent wind but it will be compensated by the system flexibility. Even the tower is flexible being separated into a rigid and an inclined part with the turbine at the top and the counterweight at the bottom. The blade has freedom to move in flap and lead-lag direction and controls its pitch angle passively. The electrical energy production, was backed-up into the grid. The cost per KWh is estimated at 0. 21 DM while the conventional cost is 0. 28 DM. The demonstration phase will last one year and results are expected with special interest as it is a totally new design based on the soft theory design concept. It is a cooperative project of MBB and RIVA CALZONI.Objective: To install an aircraft-derivative gas turbine of 35 MW in the contractor's power plant with the necessary alterations and to operate the system continuously and at full load under industrial conditions. General Information: The energy requirement of the chemical industry is changing towards more electricity and less steam, a balance which for conventional power plants is difficult to achieve in an energy-efficient manner. This project will demonstrate that the use of aircraft-derivative gas turbines in a conventional power plant can improve the electricity output by 30 per cent while reducing the steam production. The system comprises first a gas generator which consists of 2 compressors of increasing power built in-line, a combustor and 2 turbines of decreasing power equally built in-line. This is linked to a 3-stage power turbine which drives the electricity generator. The exhaust gases of the power turbine are ducted into a heat recovery boiler for steam production. The gas generator is the critical part as the turbine. In contrast to industrial turbines, aircraft turbines are normally not used in continuous operation and at full-load during aircraft take-off. This new aircraft-derivative gas turbine will be installed in place of an existing industrial gas turbine in the power station of Dow Chemical GmbH in Stade. The financial EEC participation of 2,330,000.-DM is limited to the innovative part of the project i.e. the construction of the...
Das Projekt "Two stage gas generator for industrial wastes" wird vom Umweltbundesamt gefördert und von Eisenmann Maschinenbau KG durchgeführt. Objective: Thermic utilization of industrial residual system resp. production residues in a two stage incineration system under production conditions. The tests contain as well pre-trials for determination of the optimal system parameter as also permanent trial runs, for establishing of material and energy balances and for judgement of the operation reaction through a longer time period. By the work with this process the advantages shall be shown: - Profitability also with small residual material amount of 200-1000 kg/h - complete energetic utilization of the material - easy integrating in available heating systems, for example preswitching of an available boiler system - universal usability of energy - utilization of the product residues in the own factory for heating, process heat and evtl. electric current generation - reduction of the removal costs. General Information: The demonstration system, built in the smallest production scale, had been erected in the technical science department of the Company EISENMANN. The process principle is based on a mechanical pre-treatment, with which the material will be communited with a slitting rollers appliance and afterwards will be transported into a storage silo. From the silo the filling system continuously pushes in the waste material in the fluidized bed reactor, which has a quadratic free cross section of 500 x 500 mm and is provided with a 400 mm thick fireproof lining. A 1 m high piling up of quartz sand with a grain size of 0,4-1,6 mm serves as heat bearer medium. The piling up will be fluidized by the injection of hot flue gases. The advantages of a fluidized bed as pyrolytic stages are the following: - The fluidizing of the sand causes a uniform distribution of temperature - an intensive heat transition between sand and residual material is given - by the fluidizing a mechanical comminution of the material simultaneously takes place, with that the lump forming of the used material will be avoided - by a low oxygen, preheated fluidized gas a pyrolisation with under stoichiometric incineration takes place so, that a max. reaction temperature of approx. 600 degree of Celsius up to 700 degree of Celsius arises, with which still no slag forming appears. The following thermic processes proceed: The hot flue gases (approx. 650 degree of Celsius) contain 6-8 per cent oxygen. They hold the sand bed on approx. 550 degree of Celsius. The supplied residual material combustes in these conditions under stoichiometric. Through a short insulated connection line the pyrolitic gases reach in a vertical arranged combustion chamber. Here they will be burned with the help of a support burner by injection of fresh air with approx. 1100 degree of Celsius. Following the combustion chamber the flue gases will be diverted horizontally, before they give away again in a vertical heat exchanger their energy to a hot water circulation. After the heat exchanger the flue gases are still approx. 250 degree of Celsius...
Das Projekt "Municipal wood energy center Rottweil" wird vom Umweltbundesamt gefördert und von Stadtwerke Rottweil durchgeführt. Objective: Electricity production by gasification of 6350 tonnes per year of fuel wood from forestry waste, communal wood waste and energy plantations in a three stage gas generator in the district of Rottweil. 100 ha of short rotation forestry (poplar and other species) will be planted in a first step. The power output amounts to 990 kWe and additional use of waste heat and gas for heating purpose is foreseen. The production amounts to 7,130,000 kWh. A particular attention will be given to the fuel wood logistics and notably to a 3 months capacity fuel wood storage. The payback time is estimated at 15 years. General Information: The 600 m3 silos, gasifier modules, cogeneration and control room are installed underground. This minimizes noise and also enables the trucks to drive over the silos for direct unloading. The woodchips are dried to approx. 25 per cent moisture content in a vertical rotating conical dryer by means of the available heat from the gas plant. The pre-dried woodchips enter the 3 stage EASIMOD 3500 kWh gasifier. The first stage is an underfeed co-current primary reactor producing primary gas with flying charcoal at about 650 deg. C. Gas is then reformed at approx. 900 deg. C in a separate Venturi burner with secondary air inlet and charcoal/activated carbon extraction. Tars and phenols are cracked. The third step is a separate glowing coke reactor which acts as a safety for tars and phenols cracking and as a gas heating value booster. Gas cleaning consists of dry dedusting in multicyclones, followed by a two-step scrubbing (impingement scrubber plus packed scrubber). The gas is cooled down to approx. 20 deg. C and the heat obtained is then used for predrying the fuel in the woodchips dryer. Ammonia washed out in the scrubbing water is stripped in a packed bed stripper. A waste water treatment plant is foreseen. The dryer, gasifier and gas scrubber are conceived as separate frame-mounted modules. The whole plant runs automatically. The electricity produced will be fed into the medium 20 KV voltage municipal grid. The heat recovered simultaneously will be used in a following step for the heating of a nearby village.
Die Carl Knauber Holding GmbH & Co. KG beabsichtigt die gem. BImSchG genehmigungsbedürftige Errichtung und den Betrieb einer ortsfesten Abfüllstation für verflüssigtes Erdgas (LNG) mit einer Kapazität von 3 – 30 t am Standort „Am Autohof 2“ in 06188 Landsberg im Saalekreis. Dazu soll eine oberirdische LNG-Betankungsanlage/Tankstelle auf dem Gelände des derzeit betriebenen Autohofs Oppin errichtet werden, um insgesamt geschätzte zusätzliche ca. 7 erdgasbetriebene Lastkraftwagen pro Tag mit Treibstoff zu versorgen. Zur Befüllung wird der Lagerbehälter voraussichtlich 1-mal pro Woche über einen Tankkraftwagen (TKW) mit LNG versorgt. Die LNG-Tankstelle wird 24 h am Tag und automatisierte betrieben, sodass kein Bedienpersonal vor Ort benötigt wird. Die Betankung der Lastkraftwagen erfolgt direkt durch die geschulten Fahrzeugführer. Zur Gewährleistung eines bestimmungsgemäßen und sicheren Betriebs wird die Anlage kontinuierlich fernüberwacht und kann ggf. ferngesteuert werden. Des Weiteren sind entsprechende Sicherheitsmaßnahmen vorgesehen, wie die Ausführung mit einem umlaufenden Anfahrschutz, der Einsatz diverser Not-Aus-Systeme, Flammen-, Rauch- und Gasdetektoren, eines Ausbläsers sowie eines Gasgenerators zur Vermeidung von Beschädigungen durch Überdruck. Die Anlage besteht aus einem standardisierten, horizontal aufgestellten, temperaturisolierten, sicherheitsbedingt zu maximal 90 % nutzbaren Tank mit 60 m³ Fassungsvermögen, den LNG-Zapfsäulen, der Pumpe, dem Saturationsverdampfer sowie dem Technikcontainer mitsamt den notwendigen Steuerungseinheiten sowie diversen Sicherheitseinrichtungen. Zusätzlich ist die Einrichtung des Aufstellbereichs sowie der Fahr- und Bewegungsfläche mit einer ausreichend dimensionierten Schleppkurve auf dem Grundstück geplant, wodurch rund 3.787 m² an bisher unversiegelter Brachfläche asphaltiert werden. Weitere Maßnahmen sind im Rahmen der Planung am Standort nicht vorgesehen.
Das Projekt "In die Klaeranlage integriertes System der Waermerueckgewinnung aus den Abgasen der Klaerschlammtrocknung" wird vom Umweltbundesamt gefördert und von Stadt Alfeld, Stadtverwaltung durchgeführt. Auf der 80.000-E+EG-Klaeranlage soll eine neuartige, mit Faulgas betriebene Klaerschlammtrocknungsanlage eingerichtet werden. Die bei dem Verfahren anfallende Waerme dient der Faulturm- und Gebaeudeheizung. Das anfallende Faulgas wird weiter genutzt zum Betrieb eines Gasgenerators zur Stromversorgung von Teilen der Klaeranlage.
Die Firma Isar Aerospace Technologies GmbH beabsichtigt, am Standort Kolbersberg 102, 84571 Reischach, auf dem Flurstück Nr. 1179 der Gemarkung Eggen einen Gasgeneratorprüfstand zu errichten und zu betreiben. Der Prüfstand für Gasturbinen mit einer Feuerungswärmeleistung von weniger als 200 Megawatt unterliegt dem Immissionsschutzrecht. Für das Vorhaben wurde beim Landratsamt Altötting eine immissionsschutzrechtliche Genehmigung nach §§ 4 und 19 BImSchG i. V. m. §§ 1 Abs. 1, 2 Abs. 1 der Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) und Nr. 10.15.2.2 Verfahrensart (V) des Anhangs 1 zur 4. BImSchV beantragt. Im Vorfeld des Genehmigungsverfahrens wurde gemäß § 7 Abs. 2 UVPG i. V. m. Ziffer 10.6.3 Spalte 2 der Anlage 1 zum UVPG eine standortbezogene Vorprüfung des Einzelfalles vorgenommen.
Das Projekt "Einsatz einer Flugzeugturbine im Dauerbetrieb in einem Industriekraftwerk" wird vom Umweltbundesamt gefördert und von Dow Deutschland Inc., Werk Stade durchgeführt. Objective: To install an aircraft-derivative gas turbine of 35 MW in the contractor's power plant with the necessary alterations and to operate the system continuously and at full load under industrial conditions. General Information: The energy requirement of the chemical industry is changing towards more electricity and less steam, a balance which for conventional power plants is difficult to achieve in an energy-efficient manner. This project will demonstrate that the use of aircraft-derivative gas turbines in a conventional power plant can improve the electricity output by 30 per cent while reducing the steam production. The system comprises first a gas generator which consists of 2 compressors of increasing power built in-line, a combustor and 2 turbines of decreasing power equally built in-line. This is linked to a 3-stage power turbine which drives the electricity generator. The exhaust gases of the power turbine are ducted into a heat recovery boiler for steam production. The gas generator is the critical part as the turbine. In contrast to industrial turbines, aircraft turbines are normally not used in continuous operation and at full-load during aircraft take-off. This new aircraft-derivative gas turbine will be installed in place of an existing industrial gas turbine in the power station of Dow Chemical GmbH in Stade. The financial EEC participation of 2,330,000.-DM is limited to the innovative part of the project i.e. the construction of the foundation of the turbine, the assembly of the turbine unit and the construction of the air-inlet channel and exhaust channel as well as to the measuring phase. Achievements: The 'Dow Chemical GmbH', now 'Dow Deutschland Inc.', has now accumulated more than 170 000 operating hours with this type of aero derivative gas turbine. Dow replaced in three consecutive years, starting 1984, three FIAT TG 20 gas turbines with LM 5000 aero derivative gas turbines. The availability, counted as three available for synchronization of the electric generator has been at 89,4 per cent of time of all three units. The guaranteed electrical efficiency of the manufacturer of 35,4 per cent lower heating value (gas generator only) has been exceeded all the time, even at the high time engine with greater than 47750 operating hours. However the reliability of the engines is below that published by the manufacturer and the packagers despite all efforts. Dow has had in total nineteen unexpected engine failures. Classifying the root causes of the unexpected engine failures one can find four main areas. a) High pressure compressor at the beginning b) Bearings especially hot end side (still a problem) c) Fuel Nozzles at the beginning, two major high pressure turbine damages in 1987 d) Combustor with water injection for NOx-abatement limited service time Now with 47 LM 5000 sets in operation worldwide, the data base is expanded and problems can be solved in much faster time frames than in the beginning with less than ten
Das Projekt "Prototypanlage Nukleare Prozesswaerme (PNP) F+E-Arbeiten zur Wasserdampfvergasung von Kohle" wird vom Umweltbundesamt gefördert und von Bergbau-Forschung, Forschungsinstitut des Steinkohlenbergbauvereins durchgeführt. Weiterfuehrung der Arbeiten zur Entwicklung des Gasgenerators fuer die WKV innerhalb des PNP-Projektes mit folgenden Einzelaufgaben: 1. Halbtechnische Versuchsanlage, 2. Gasgeneratormodelle, 3. Labor, 4. Katalyse, 5. Umsetzung der F+E-Ergebnisse, 6. Projektleitung.
Das Projekt "Gewaechshausheizung und CO2 Duengung mit gasbetriebenen Warmlufterzeugern nach einem neu entwickelten Verfahren" wird vom Umweltbundesamt gefördert und von Dworschak durchgeführt. Erstmals sollen im Vorhaben Dworschak neu entwickelte CO2-Generatoren zum Einsatz kommen, die eine erheblich verbesserte Verbrennung mit wesentlich geringeren Schadstoffemissionen zulassen. So werden die NOx-Emissionen auf rund 20 Prozent des ueblichen Wertes gesenkt und eine vollstaendige Verbrennung in extremen Situationen, wie zB 17 Prozent Sauerstoffgehalt in der Verbrennungsluft ist gewaehrleistet. Daneben ergeben technische Veraenderungen an der Luftfuehrung eine verbesserte Verteilung des CO2 und der Warmluft im Gewaechshaus. Dies fuehrt zu einer weiteren Energieeinsparung und Verringerung der Umweltbelastungen.
Origin | Count |
---|---|
Bund | 26 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 25 |
Text | 1 |
Umweltprüfung | 2 |
License | Count |
---|---|
closed | 2 |
open | 26 |
Language | Count |
---|---|
Deutsch | 28 |
Englisch | 6 |
Resource type | Count |
---|---|
Dokument | 2 |
Keine | 17 |
Webseite | 9 |
Topic | Count |
---|---|
Boden | 20 |
Lebewesen & Lebensräume | 17 |
Luft | 16 |
Mensch & Umwelt | 28 |
Wasser | 15 |
Weitere | 25 |