API src

Found 1051 results.

Related terms

Ammoniak Cracking: Ammoniak als Wasserstoffträger für den interkontinentalen Transport

Auf dem Weg zur Dekarbonisierung der deutschen Wirtschaft ist die Verfügbarkeit großer Mengen 'grünen' Wasserstoffs von entscheidender Bedeutung. Bis 2030 erwartet die Bundesregierung einen nationalen Wasserstoffbedarf von rund 90 bis 110 TWh. Der zusätzliche Verbrauch wird im Industriesektor (z.B. Stahlproduktion) und im Mobilitätsbereich mit Brennstoffzellen (z.B. Busse, Flugzeuge) benötigt. Da die nationale Produktion an grünen Wasserstoff in Deutschland jedoch für die nationalen Dekarbonisierungsziele nicht ausreicht, setzt die Bundesregierung auf umfangreiche Importe aus Regionen mit günstigen erneuerbaren Energien. Für einen energieeffizienten Wasserstofftransport ist die Umwandlung von Wasserstoff in Ammoniak, das eine hohe Wasserstoffdichte aufweist, sinnvoll. Die Rückgewinnung des Wasserstoffs aus Ammoniak erfolgt am Zielort über das sogenannte Ammoniak Cracking. Stand der Technik ist, dass die Ammoniakspaltung industriell bisher nur für kleine Nischenanwendungen, mit nur geringen Wasserstoffströmen (typische Größe: 1 - 2 t pro Tag) angewendet wird. Vor dem Hintergrund der nationalen Klimaschutzziele, der angestrebten Reduktion der CO2-Emissionen und der angespannten Versorgungslage mit Energierohstoffen, strebt das Forschungsprojekt HyPAC eine Transformation der deutschen Wirtschaft auf Wasserstoff-Basis an. Im Rahmen von HyPAC soll ein neues Verfahren zur Wasserstofferzeugung aus Ammoniak, entwickelt und erstmalig in einer Miniplant demonstriert werden. Linde strebt einen industriellen, leicht skalierbaren und energieeffizienten Ammoniak Cracking Prozess an, um im großen Maßstab Wasserstoff (~ 500 t pro Tag) in hoher Reinheit und zu attraktiven Preispfaden zentral zu erzeugen und für große industrielle Abnehmer, wie chemische Industrie, Wasserstoff-Pipeline-Netz oder Gasturbinen, bereitzustellen. Bei Projekterfolg kann das Verfahren einen großen Beitrag zur signifikanten Reduktion der CO2-Emissionen aus Stromerzeugung, Verkehr und Industrie, leisten.

Multikomponentige äquiatomare Oxide als Hochleistungsmaterialien für zukünftige Wärmedämmschichten

Entwicklung einer Mikro-Hybrid-Gas/ORC-Turbine, Teilvorhaben: Entwicklung einer Mikro-Hybrid-Gas/ORC-Turbine

Turbomaschinen für die Transformation in das integrierte Energiesystem der Zukunft, Teilvorhaben: 3.1a, 3.2a, 3.4a und 4.2b - Flexibilität im Betrieb

Smartkompensator für die kritische Infrastruktur, Teilvorhaben: Auswahl der Sensortechnik und Implementierung der Sensorik

Das Energieversorgungsnetz in Deutschland wird heterogener und komplexer. Die Projektierung vieler kleinerer, verteilter Kraftwerksanlagen zur Energiegewinnung sowie die Integration bestehender Systemkomponenten stellen neue Herausforderungen an die Anlagen sowie deren Teilkomponenten dar. Insbesondere das An- und Herunterfahren einer Gasturbine bewirkt thermischen und mechanischen Stress. Um Systemausfälle zu vermeiden, müssen die verwendeten Kraftwerkskomponenten optimiert werden. Kompensatoren sind kritische Anlagenkomponenten, die Bewegungen aufnehmen, sodass Schäden am System verhindert werden und die Funktionsfähigkeit des Gesamtsystems gewährleistet bleibt. Im Rahmen einer prädiktiven Instandhaltung (Predictive Maintenance) sollte es möglich werden, den Zustand von Kompensatoren im laufenden Betrieb und in Echtzeit zu überwachen und bevorstehende Wartungseingriffe zu prognostizieren. Das Ziel dieses Vorhabens ist die Neuentwicklung eines Kompensators dessen Betriebszustand sensorisch erfasst und überwacht wird. Dafür wird ein experimentelles System zur Datenerfassung und -weiterleitung gebaut, das unter realen Bedingungen in einem Versuchskraftwerk in Deutschland getestet wird. Innerhalb des SMART-KIT Projektes wird damit ein neuartiges Bauteil für kritische Infrastrukturen getestet, das zu erhöhter Zuverlässigkeit an thermischen Kraftwerken beitragen kann und damit einen kostenintensiven Ausfall des Gesamtsystems verhindert.

Optimierung des bestehenden Verbrennungssystems der Siemens Energy Gas Turbine 4000F für den sicheren Betrieb mit Wasserstoffanteil größer als 50%vol zur CO2-Emissionsreduktion

Die Siemens Energy SGT5/6-4000F Gasturbine ist mit über 350 weltweit betriebenen Anlagen - und damit der zweitgrößten Gasturbinen Flotte größer als 100MW überhaupt - ein wichtiges Produkt bei der gasbasierten Stromerzeugung. Ziel dieses Projektes ist es, den 4000F Brenner bis 2026 so weiterzuentwickeln, dass der Betrieb der Gasturbine mit Gasmischungen größer als 50% vol H2 ohne Leistungsabsenkung ermöglicht wird. Die Lösung soll vollständig kompatibel zur installierten 4000F Flotte auf Basis des bestehenden Verbrennungssystems sein, d.h. erforderliche Anpassungen dürfen nur geringfügige Modifikationen darstellen, um eine wirtschaftliche Umrüstung für die Betreiber zu ermöglichen. Der derzeitige Status bzgl. hoher H2-Anteile ( größer als 30%) ist mit TRL2 zu bewerten. Abschluss des Projekts soll ein Review gemäß des Produktentwicklungsprozesses sein, so dass eine vollständige Freigabe des Prototypen-Designs zur Maschinenimplementierung für die Erstanwendung erfolgt.

Optimierung des bestehenden Verbrennungssystems der Siemens Energy Gas Turbine 4000F für den sicheren Betrieb mit Wasserstoffanteil größer als 50%vol zur CO2-Emissionsreduktion, Teilvorhaben: Designoptimierung und Validierung von SGT5-4000F Brennern basierend auf Hochdruckverbrennungstests

Die Siemens Energy SGT5/6-4000F Gasturbine ist mit über 350 weltweit betriebenen Anlagen - und damit der zweitgrößten Gasturbinen Flotte größer als 100MW überhaupt - ein wichtiges Produkt bei der gasbasierten Stromerzeugung. Ziel dieses Projektes ist es, den 4000F Brenner bis 2026 so weiterzuentwickeln, dass der Betrieb der Gasturbine mit Gasmischungen größer als 50% vol H2 ohne Leistungsabsenkung ermöglicht wird. Die Lösung soll vollständig kompatibel zur installierten 4000F Flotte auf Basis des bestehenden Verbrennungssystems sein, d.h. erforderliche Anpassungen dürfen nur geringfügige Modifikationen darstellen, um eine wirtschaftliche Umrüstung für die Betreiber zu ermöglichen. Der derzeitige Status bzgl. hoher H2-Anteile ( größer als 30%) ist mit TRL2 zu bewerten. Abschluss des Projekts soll ein Review gemäß des Produktentwicklungsprozesses sein, so dass eine vollständige Freigabe des Prototypen-Designs zur Maschinenimplementierung für die Erstanwendung erfolgt.

Optimierung des bestehenden Verbrennungssystems der Siemens Energy Gas Turbine 4000F für den sicheren Betrieb mit Wasserstoffanteil größer als 50%vol zur CO2-Emissionsreduktion, Teilvorhaben: Laborversuche

Bei stationären Gasturbinen kann der Übergang zur CO2-freien Energie-Erzeugung in Schritten erfolgen. Dabei wird die Brennstoff-Zusammensetzung sukzessive von reinem Erdgas in Richtung Wasserstoff verschoben. Die Brenner in stationären Gasturbinen sind als besonders schadstoffarme Vormischbrenner stark auf die Verbrennungseigenschaften von Erdgas optimiert. Da sich die Verbrennungseigenschaften von Wasserstoff und Erdgas stark unterscheiden, stellt die Zumischung von Wasserstoff zum Brennstoff hohe Anforderungen an die Brennstoff-Flexibilität der Vormischbrenner. Insbesondere wird sich mit zunehmendem Wasserstoffanteil die Lage der Wärmefreisetzungszone relativ zum Brenneraustritt ändern. Dieser Einfluss soll an einem skalierten, aber dennoch anwendungsorientierten Brenner, bei realistischen Betriebsbedingungen unter Einsatz laseroptischer Messverfahren charakterisiert werden.

Konzeptstudie zur Abwärmenutzung in einem Luftspeicher-Gasturbinenkraftwerk (LGT)

Die Einspeicherung von Druckluft in die Kavernen des LGT muss nahezu isotherm erfolgen. Die dabei anfallende Verdichtungswärme wird bisher in die Umgebung abgegeben. In der Studie werden Möglichkeiten untersucht und bewertet, diese und auch die Turbinenabwärme bei Turbinenbetrieb in Form von Dampf zu speichern. Mit dem gespeicherten Dampf wird beim Ausspeichern ein integrierter Gas-Dampf-Prozess realisiert, mit dem die gespeicherte Energie genutzt werden kann, was zu deutlichen Brennstoffeinsparungen führt.

Entwicklung eines Referenzkonzeptes für eine hocheffiziente Energieanlage auf Basis eines neuartigen, integrierten Gas-Dampf-Prozesses

Vorhabensziel ist die Entwicklung und Bewertung eines Referenzkonzeptes für eine hocheffiziente Energieanlage auf Basis eines integrierten Gas-Dampf-Prozesses. Der Prozess verfügt über eine hohe Wärmelastvariabilität und bietet die Möglichkeit zur Nutzung industrieller Abwärme. Zugleich ist er wirtschaftlicher gegenüber heutigen ausgeführten KWK-Anlagen. Der Prozess nutzt die Möglichkeit, Wasserdampf, der im Abhitzekessel erzeugt wird oder in einem externen Prozess anfällt, an geeigneten Stellen vor dem Turbineneintritt zu injizieren. Die Möglichkeit, zwischen Wärmeauskopplung und innerer Wiedereinspeisung zu wechseln, ist ein wesentlicher Vorteil des Prozesses. Prozessanalyse und -simulation sollen effektive Schaltungen und Variationsmöglichkeiten aufzeigen. Es werden für einzelne Komponenten technische Lösungen erarbeitet, wobei der Schwerpunkt auf der Gasturbine liegt. Die energiewirtschaftliche Bewertung vergleicht Konkurrenztechnologien und bewertet die ökonomische Einsatzfähigkeit. Die Ergebnisse sollen bei dezentralen und hybriden Energieanlagen umgesetzt werden. Zwischenschritte sind eine Versuchsanlage an der TUD (kleiner als 1 MW) und eine Demoanlage größerer Leistung.

1 2 3 4 5104 105 106