Schummerungsbilder sind Rasterbilder, die auf der Basis des Digitalen Geländemodells in der Gitterweite von 1m gewonnen werden. Über eine Lichtquelle wird eine Flächentönung mit Schatteneffekt generiert, auf der Oberflächenstrukturen sichtbar sind.
Die Höhenlinien liegen flächendeckend als Rasterdaten in Bayern vor und werden aus den Daten des Digitalen Geländemodells (GDM5) abgeleitet.
Dieser OGC konforme WebCoverageService stellt das Digitale Oberflächenmodell (DGM) bereit. Digitale Geländemodelle (DGM) sind digitale, numerische, auf ein regelmäßiges Raster reduzierte Modelle der Geländehöhen und –formen der Erdoberfläche. Sie beinhalten keine Information über Bauwerke (z. B. Brücken) und Vegetation. Das LVermGeo Sachsen-Anhalt stellt im Rahmen ihres gesetzlichen Auftrags das DGM mit einer Rasterweite von einem Meter bereit. Erläuterung zum Fachbezug: WCS Service
Dieser OGC konforme WebCoverageService stellt das Digitale Oberflächenmodell (DOM) bereit. Das Digitale Oberflächenmodell (DOM) beschreibt im Gegensatz zum Digitalen Geländemodell - DGM nicht die Höhe des natürlichen Erdbodens (Gelände), sondern die Höhe der Oberfläche der auf der Erde befindlichen natürlichen und künstlichen Objekte (z. B. Vegetation, Gebäude, Fahrzeuge). Es handelt sich hierbei um ein auf einer Laserscanbefliegung basierendes Situationsmodell. Maßstab: 1:null; Bodenauflösung: 1m; Scanauflösung (DPI): null; Erläuterung zum Fachbezug: WCS Service
Die Exposition beschreibt die Richtung des Hanggefälles. Sie hat einen maßgeblichen Einfluss auf die Bodentemperatur sowie auf den Bodenfeuchtegehalt. Die Exposition einer Fläche wirkt sich daher direkt auf die Wärmeenergie aus, die durch Erdwärmekollektorsysteme dem Boden entzogen werden kann. Nach Süden exponierte Hänge sind in der Regel durch intensivere Sonneneinstrahlung und geringere Bodenfeuchtegehalte während der Sommermonate gekennzeichnet. In den Wintermonaten kann die stärkere Sonneneinstrahlung die Schneeschmelze begünstigen und somit zu höheren Feuchtegehalten des Bodens führen. Im Gegensatz dazu sind Nordhänge thermisch benachteiligt. Die geringere Sonneneinstrahlung begünstigt höhere Bodenfeuchtegehalte. Der Datensatz stellt eine Grundlage für großräumige Betrachtungen dar und ersetzt nicht die Durchführung von Detailuntersuchungen.
Die ca. 17000 Topographischen Aufnahmeblätter wurden Mitte des 19. bis Mitte des 20. Jahrhunderts auf der Grundlage der Flurkarte erstellt. Sie dienten als Arbeitsgrundlage zur Schaffung eines topographischen Kartenwerks im Maßstab 1:25000. Die auf Karton gedruckten Flurkarten wurden durch zusätzlichen topographischen Geländeinformationen (Höheninformationen, zusätzliche Wege und Gebäude oder Topographische Einzelzeichen) ergänzt. Die gemessenen Geländeinformationen (insbesondere Höhenformlinien, Höhenlinien und Höhenkoten) wurden direkt vor Ort in die Flurkarte eingetragen. Früher wurden auf der Grundlage der Topographischen Aufnahmeblätter die Höhenlinienkarten abgeleitet, wobei diese auch für die topographischen Karten verwendet wurden. Die Topographischen Aufnahmeblätter liegen flächendeckend als georeferenzierte Rasterdaten im Blattschnitt der Flurkarten meist im Maßstab 1:5000 vor. Vereinzelt sind sie auch im Maßstab 1:2500 oder 1:1000 vorhanden. Dieses historische Kartenwerk ist digital mit oder ohne Georeferenzierung oder als analoger Druck erhältlich.Die Aufnahmeblätter können in den Druckauflösungen 100 L/cm (254 dpi), 200 L/cm (508 dpi) und 320 L/cm (813 dpi) abgegeben werden.
Das Digitale Geländemodell (DGM) beschreibt die Grenzfläche zwischen der Erdoberfläche bzw. Wasserobefläche und der Luft, ohne Vegetation und Bebauung. Es besteht aus einem regelmäßigen Gitter und wird in der Gitterweite 1 m zum Download bereitgestellt.
Schummerungsbilder sind Rasterbilder, die auf der Basis des Digitalen Geländemodells in der Gitterweite von 1m gewonnen werden. Über eine Lichtquelle wird eine Flächentönung mit Schatteneffekt generiert, auf der Oberflächenstrukturen sichtbar sind.
Die Höhenlinien liegen flächendeckend als Rasterdaten in Bayern vor und werden aus den Daten des Digitalen Geländemodells (GDM5) abgeleitet.
Das Projekt "Die Bedeutung von Eisnukleationspartikeln und -moden für die Entstehung der Eisphase und Niederschlag: Modellsimulationen basierend auf Labormesssungen" wird vom Umweltbundesamt gefördert und von Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre durchgeführt. In diesem Projekt sollen mit COSMO-SPECS, einem 3D-Wolkenmodell mit einer spektralen Beschreibung der wolken-mikrophysikalischen Prozesse von Hydrometeoren und Aerosolpartikeln, Modellsimulationen durchgeführt werden. Da dasselbe mikrophysikalische Schema in dem Luftpaketmodell enthalten ist, mit dem in INUIT-1 gearbeitet wurde, werden alle neuen Entwicklungen und Verbesserungen der Mikrophysik aus INUIT-1 direkt in COSMO-SPECS übertragen. Zunächst soll ein künstlicher Testfall simuliert werden, eine Wärmeblase über einem flachen Gelände. Sensitivitätsstudien sollen die Entwicklung der Eisphase und die Bildung von Niederschlag aufzeigen, wobei die Verteilung und die Typen der Eisnukleations-Partikel auf realistische Weise variiert werden. Ein anderer Schwerpunkt der Sensitivitätsstudien soll auf der Wirkung von sog. kleinen Triggern liegen, wie etwa Eisnukleations-Partikel oder Gefriermoden (z.B. biologische Partikel oder Kontaktgefrieren), die keine signifikanten Effekte hinsichtlich der Anzahl der entstehenden Eispartikel zeigen, aber doch die Dynamik der Wolke in einer Weise beeinflussen können, dass sich im Endeffekt die Eisbildung erhöht. Weiterhin ist in Zusammenarbeit mit INUIT RP5 eine Fallstudie geplant, die auf INUIT Feldexperimenten basiert. Hier sollen die Beiträge der verschiedenen eisbildenden Prozesse quantifiziert werden und dadurch die atmosphärische Relevanz der Eisbildungs-Regimes, wie sie in INUIT Labor- und Feldexperimenten untersucht werden, abgeschätzt werden. Gleichzeitig werden neue Parametrisierungen für Partikel, die während INUIT-2 untersucht werden, entwickelt und in das mikrophysikalische Schema eingebunden; vorhandene Parametrisierungen sollen weiter modifiziert und verbessert werden. Dieses Projekt schließt selbst auch Laborexperimente zum Kontakt- und Immersionsgefrieren ein, die am Mainzer vertikalen Windkanal und mit einer akustischen Tropfenfalle durchgeführt werden. Hier liegt der Schwerpunkt auf einer Verbesserung des Kontaktgefrierens. Die Experimente sollen am Mainzer vertikalen Windkanal durchgeführt werden, wobei unterkühlte Tropfen in einem Luftstrom, der die potentiellen Kontakteiskeime mit sich führt, frei ausgeschwebt werden. Auf diese Weise kann die Anzahl der Kollisionen zwischen Tropfen und Partikeln berechnet und die Gefriereffizienz, d.h. die Gefrierwahrscheinlichkeit für eine Tropfen-Partikel Kollision bestimmt werden.