Das Projekt "Possible effects of transgenic plants on soil organisms" wird vom Umweltbundesamt gefördert und von Universität Rostock, Agrar- und Umweltwissenschaftliche Fakultät, Fachbereich Landeskultur und Umweltschutz, Institut für Bodenkunde und Pflanzenernährung durchgeführt. Soil is the first component of the environment that can be effected by GM plants, because they do not only consume the nutritive substances from the soil, but also release there different compounds during a growing period, and leave in the soil their remains. If the plants are modified to increase their resistance to plant pathogens, particularly bacteria, they can also affect the other microorganisms important for plant development. Also there are no considerable data about possible effect of GM plants on soil organic matter and chemical processes in soil. For the experiment it is planned to use transgenic potato plants (Solanum tuberosum L. cv. Desiree) expressing a chimerical gene for T4 lysozyme for protection against bacterial infections; - obtaining and short-term growing of GM plants in laboratory conditions; - extraction and collection of root exudates and microbial metabolites from rhizosphere; - analysis of these exudates by Pyrolysis-Field Ionisation Mass Spectrometry (Py-FIMS) in comparison with the exudates of wild-type plants and transgenic controls not harbouring the lysozyme gene, and with dissolved organic matter from non-cropped soil; - creation of 'fingerprints' for each new transgenic line in combination with certain soil on the basis of marker signals. Expected impacts: - New highly cost-effective express testing system for the risk assessment of genetically modified plants at the earliest stages of their introduction; - The conclusion about safety/danger of GM plants for the soil ecosystems; - Model for prediction of possible risk caused by GM plants.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung durchgeführt. Ziel des Projektes ist die Erstellung / Vervollständigung einer physischen Karte des Gerstegenoms und deren Verankerung an die genetische Karte. Zur Unterstützung eines laufenden internationalen Kooperationsprojektes (Pakt für Forschung, IPK/ACPFG Adelaide/TU München) wird mittels der anerkannten Technik des High information Content Fingerprinting (HICF) eine BAC Bibliothek (ca. 5-fache Repräsentation des haploiden Gerstegenoms) analysiert und in die im Aufbau befindliche physische Karte des Gerstegenoms integriert. Um eine effizient Nutzung der entstehenden Ressource zu erzielen, bedarf es der genetischen Verankerung der Contig Karte. Diese wird durch gen-basierte Screenings gepoolter BAC Bibliotheken und durch die Hochdurchsatz 454 Sequenzierung von 3000 BAC Klonen (plus 2000 in einer zweiten Förder-Phase) erzielt. Diese entstehende öffentliche Resource wird zukünftig die effiziente Isolierung eines (prinzipiell) jeden Gens aus Gerste, und zu großem Teil aus verwandten Arten wie Weizen und Roggen, erlauben. Sie wird außerdem als Grundlage für eine weitgehende Sequenzierung des Gerstegenoms dienen.
Das Projekt "Dispersal and intraspezific differentiation of benthic deep-sea isopods (crustacea) in the WEDDELL Sea" wird vom Umweltbundesamt gefördert und von Zoologisches Forschungsmuseum Alexander König - Leibniz-Institut für Biodiversität der Tiere durchgeführt. Mit diesem Projekt möchten wir einen Beitrag zum besseren Verständnis evolutionärer Prozesse und der Diversität der Tiefseefauna leisten. Es sollen Ergebnisse der vorhergehenden Expeditionen ANDEEP I, II ergänzt werden, die auf Proben aus der westlichen Region des atlantischen Sektors des Südpolarmeeres beruhen. Um die evolutionäre Differenzierung der antarktischen Tiefseefauna erfassen zu können, müssen Vergleiche über größere geographische Regionen durchgeführt werden. Mit ANDEEP III eröffnet sich die Möglichkeit der Analyse eines vollständigen Transektes quer durch das nördliche Weddellmeer. Mit den in vorhergehenden Projekten gewonnenen 18SrDNA Sequenzen können wir die Rekonstruktion der Stammesgeschichte und der alten Radiation der Tiefsee-Taxa der Asellota (Crustacea, Isopoda) vervollständigen. Bisher sind einige Tiefseefamilien noch nicht im Datensatz vertreten. Das zentrale Anliegen ist aber die genetische Analyse der Differenzierung von abyssalen Populationen im nördlichen Bereich des Weddellmeeres. Mit Hilfe von Sequenzinformation, mit AFLP Fingerprints, die sehr detailliert populationsspezifische Unterschiede sichtbar machen können, sowie - in Kooperation mit Taxonomen - unter Berücksichtigung morphologischer Merkmale möchten wir testen, ob geologische Strukturen (Erhebungen, Becken), Unterschiede in den Wasserkörpern oder in der Wassertiefe als Barrieren für den Genfluß wirken. Gibt es solche Barrieren, müssen entfernte oder getrennte Fundorte auch unterscheidbare Populationen oder nah verwandte, ggf. kryptische Arten aufweisen. Es soll geprüft werden, ob die geographische Distanz mit der genetischen Distanz korreliert, ob es in Tiefseebecken lokale Radiationen gibt, und ob es in der Artenzusammensetzung Unterschiede zwischen benachbarten Meeresregionen (z.B: Scotia-See, Kap-Becken, Angola-Becken) gibt. Die letztgenannte Frage erfordert den Vergleich mit den Ergebnissen anderer Expeditionen (DIVA 1 wird derzeit ausgewertet, DIVA 2 ist für 2005 geplant).
Das Projekt "Teilprojekt E" wird vom Umweltbundesamt gefördert und von KWS LOCHOW GMBH durchgeführt. Das Ziel des GeneBank2.0-Projekts ist es, die Weizensammlung in der Genbank des IPK Gatersleben für die Züchtung über einen Ansatz der Genomik, Phenomik, Biodiversitätsinformatik und Präzisions-PreBreeding integriert zu erschließen. Die Strategien zur Nutzung genetischer Ressourcen reichen von der Identifikation von Punktmutationen bis hin zu Gameten mit hohem Zuchtwert. Wir werden genetische Fingerprints von ca. 22.000 Akzessionen des IPK Gatersleben erstellen. Diese bilden die Basis für die Entwicklung von vier innovativen und komplementären Strategien zur Identifizierung neuer nützlicher Allele oder Gameten: (1) Die 22.000 Akzessionen werden auf Resistenzen gegen die Krankheiten Gelbrost, Braunrost und Ährenfusariose untersucht. Phänotypische sowie Sequenzdaten werden mithilfe eines neuen Algorithmus analysiert, der es ermöglicht, eine nicht stratifizierte Population für Assoziationskartierung (GWAS) zusammenzustellen. Diese Population wird mittels der RenSeq-Technologie sequenziert, um resistenzassoziierte Gene und Allele durch haplotyp-basierte GWAS ausfindig zu machen. (2) Bei der Suche nach neuen Merkmalen liegt der Schwerpunkt auf der genetischen Variation für eine offene Weizenblüte, da dies für die Hybridweizenzüchtung wichtig ist. Unter Anwendung der 'Genomics-based Select-and-Backcross'-Methode werden Hauptgene identifiziert, die für offene Bestäubung verantwortlich sind. (3) Durch die Kombination von molekularer Physiologie und Populationsgenomik wird ein gezieltes Allele-Mining nach Kandidatengenen die an der Stickstoffnutzungs-Effizienz beteiligt sind durchgeführt. (4) Werkzeuge der genomischen Selektion werden beim Pre-Breeding benutzt, um genetische Variation für den Kornertrag aufzuschließen. Die vier Strategien sind in Aktivitäten der Biodiversitätsinformatik eingebettet, um die umfangreichen Daten mit neuen Werkzeugen der Populationsgenomik und der Quantitativen Genetik zu analysieren.
Das Projekt "Teilprojekt F" wird vom Umweltbundesamt gefördert und von Limagrain GmbH durchgeführt. Das Ziel des GeneBank2.0-Projekts ist es, die Weizensammlung in der Genbank des IPK Gatersleben für die Züchtung über einen Ansatz der Genomik, Phenomik, Biodiversitätsinformatik und Präzisions-PreBreeding integriert zu erschließen. Die Strategien zur Nutzung genetischer Ressourcen reichen von der Identifikation von Punktmutationen bis hin zu Gameten mit hohem Zuchtwert. Wir werden genetische Fingerprints von ca. 22.000 Akzessionen des IPK Gatersleben erstellen. Diese bilden die Basis für die Entwicklung von vier innovativen und komplementären Strategien zur Identifizierung neuer nützlicher Allele oder Gameten: (1) Die 22.000 Akzessionen werden auf Resistenzen gegen die Krankheiten Gelbrost, Braunrost und Ährenfusariose untersucht. Phänotypische sowie Sequenzdaten werden mithilfe eines neuen Algorithmus analysiert, der es ermöglicht, eine nicht stratifizierte Population für Assoziationskartierung (GWAS) zusammenzustellen. Diese Population wird mittels der RenSeq-Technologie sequenziert, um resistenzassoziierte Gene und Allele durch haplotyp-basierte GWAS ausfindig zu machen. (2) Bei der Suche nach neuen Merkmalen liegt der Schwerpunkt auf der genetischen Variation für eine offene Weizenblüte, da dies für die Hybridweizenzüchtung wichtig ist. Unter Anwendung der 'Genomics-based Select-and-Backcross'-Methode werden Hauptgene identifiziert, die für offene Bestäubung verantwortlich sind. (3) Durch die Kombination von molekularer Physiologie und Populationsgenomik wird ein gezieltes Allele-Mining nach Kandidatengenen die an der Stickstoffnutzungs-Effizienz beteiligt sind durchgeführt. (4) Werkzeuge der genomischen Selektion werden beim Pre-Breeding benutzt, um genetische Variation für den Kornertrag aufzuschließen. Die vier Strategien sind in Aktivitäten der Biodiversitätsinformatik eingebettet, um die umfangreichen Daten mit neuen Werkzeugen der Populationsgenomik und der Quantitativen Genetik zu analysieren.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung durchgeführt. Das Ziel des GeneBank2.0-Projekts ist es, die Weizensammlung in der Genbank des IPK Gatersleben für die Züchtung über einen Ansatz der Genomik, Phenomik, Biodiversitätsinformatik und Präzisions-PreBreeding integriert zu erschließen. Die Strategien zur Nutzung genetischer Ressourcen reichen von der Identifikation von Punktmutationen bis hin zu Gameten mit hohem Zuchtwert. Wir werden genetische Fingerprints von ca. 22.000 Akzessionen des IPK Gatersleben erstellen. Diese bilden die Basis für die Entwicklung von vier innovativen und komplementären Strategien zur Identifizierung neuer nützlicher Allele oder Gameten: (1) Die 22.000 Akzessionen werden auf Resistenzen gegen die Krankheiten Gelbrost, Braunrost und Ährenfusariose untersucht. Phänotypische sowie Sequenzdaten werden mithilfe eines neuen Algorithmus analysiert, der es ermöglicht, eine nicht stratifizierte Population für Assoziationskartierung (GWAS) zusammenzustellen. Diese Population wird mittels der RenSeq-Technologie sequenziert, um resistenzassoziierte Gene und Allele durch haplotyp-basierte GWAS ausfindig zu machen. (2) Bei der Suche nach neuen Merkmalen liegt der Schwerpunkt auf der genetischen Variation für eine offene Weizenblüte, da dies für die Hybridweizenzüchtung wichtig ist. Unter Anwendung der 'Genomics-based Select-and-Backcross'-Methode werden Hauptgene identifiziert, die für offene Bestäubung verantwortlich sind. (3) Durch die Kombination von molekularer Physiologie und Populationsgenomik wird ein gezieltes Allele-Mining nach Kandidatengenen die an der Stickstoffnutzungs-Effizienz beteiligt sind durchgeführt. (4) Werkzeuge der genomischen Selektion werden beim Pre-Breeding benutzt, um genetische Variation für den Kornertrag aufzuschließen. Die vier Strategien sind in Aktivitäten der Biodiversitätsinformatik eingebettet, um die umfangreichen Daten mit neuen Werkzeugen der Populationsgenomik und der Quantitativen Genetik zu analysieren.
Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Landessaatzuchtanstalt (720) durchgeführt. Das Ziel des GeneBank2.0-Projekts ist es, die Weizensammlung in der Genbank des IPK Gatersleben für die Züchtung über einen Ansatz der Genomik, Phenomik, Biodiversitätsinformatik und Präzisions-PreBreeding integriert zu erschließen. Die Strategien zur Nutzung genetischer Ressourcen reichen von der Identifikation von Punktmutationen bis hin zu Gameten mit hohem Zuchtwert. Wir werden genetische Fingerprints von ca. 22.000 Akzessionen des IPK Gatersleben erstellen. Diese bilden die Basis für die Entwicklung von vier innovativen und komplementären Strategien zur Identifizierung neuer nützlicher Allele oder Gameten: (1) Die 22.000 Akzessionen werden auf Resistenzen gegen die Krankheiten Gelbrost, Braunrost und Ährenfusariose untersucht. Phänotypische sowie Sequenzdaten werden mithilfe eines neuen Algorithmus analysiert, der es ermöglicht, eine nicht stratifizierte Population für Assoziationskartierung (GWAS) zusammenzustellen. Diese Population wird mittels der RenSeq-Technologie sequenziert, um resistenzassoziierte Gene und Allele durch haplotyp-basierte GWAS ausfindig zu machen. (2) Bei der Suche nach neuen Merkmalen liegt der Schwerpunkt auf der genetischen Variation für eine offene Weizenblüte, da dies für die Hybridweizenzüchtung wichtig ist. Unter Anwendung der 'Genomics-based Select-and-Backcross'-Methode werden Hauptgene identifiziert, die für offene Bestäubung verantwortlich sind. (3) Durch die Kombination von molekularer Physiologie und Populationsgenomik wird ein gezieltes Allele-Mining nach Kandidatengenen die an der Stickstoffnutzungs-Effizienz beteiligt sind durchgeführt. (4) Werkzeuge der genomischen Selektion werden beim Pre-Breeding benutzt, um genetische Variation für den Kornertrag aufzuschließen. Die vier Strategien sind in Aktivitäten der Biodiversitätsinformatik eingebettet, um die umfangreichen Daten mit neuen Werkzeugen der Populationsgenomik und der Quantitativen Genetik zu analysieren.
Das Projekt "Teilprojekt 1: Mikroarrays" wird vom Umweltbundesamt gefördert und von PROTEKUM Umweltinstitut GmbH durchgeführt. Vorhabensziel ist, die in KORA TV 4.1 genutzten DNA-Microarrays weiter zu entwickeln, um den biologischen Abbau der Schadstoffe nachzuweisen, die in Deutschland aus ca. 100.000 Abfallablagerungen in das Grundwasser emittiert werden. Natural Attenuation (NA) führt an Ablagerungen zu einer Schadensminderung und kann mit dem in KORA TV 4.1 entwickelten NA-Screening nachgewiesen werden. Zur Weiterentwicklung des NA-Screenings wird die Humboldt-Universität zu Berlin die organischen Verbindungen in belastetem Grundwasser charakterisieren und PROTEKUM die DNA-Microarrays entwickeln, da der mikrobielle Schadstoffabbau wesentlicher Bestandteil von NA ist. Neben dem Schutz der Ressource Grundwasser werden in erheblichem Maß weitere Ressourcen eingespart, wenn 'Monitored Natural Attenuation' an Abfallablagerungen genutzt wird. Bisherige Arbeiten wurden u.a. im Rahmen von KORA durchgeführt. Dabei wurde das NA-Screening entwickelt, in dem erstmalig in kontaminiertem Grundwasser die DNA-Microarray Technologie eingesetzt wurde. Im TV 4.1 wurde gezeigt, dass so der mikrobielle Schadstoffabbau in belastetem Grundwasser nachweisen kann. Durch PROTEKUM wurden Arbeiten zum Emissionsverhalten von Altablagerungen durchgeführt, so dass eine breite Wissensbasis zu den Arbeitszielen vorhanden ist. Die Arbeitsplanung ist für 2 Jahre in 5 Arbeitspakete gegliedert. Im AP 1, (HU) werden die Grundwasserproben aus dem Abstrom von Abfallablagerungen geochemisch charakterisiert. In den AP 2 - AP 4 (PROTEKUM) wird die Optimierung der DNA-Microarrays durchgeführt. Im AP 5 (HU + PROTEKUM) werden die Ergebnisse ausgewertet und umgesetzt.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Resistenzforschung und Stresstoleranz durchgeführt. Das Ziel des GeneBank2.0-Projekts ist es, die Weizensammlung in der Genbank des IPK Gatersleben für die Züchtung über einen Ansatz der Genomik, Phenomik, Biodiversitätsinformatik und Präzisions-PreBreeding integriert zu erschließen. Die Strategien zur Nutzung genetischer Ressourcen reichen von der Identifikation von Punktmutationen bis hin zu Gameten mit hohem Zuchtwert. Wir werden genetische Fingerprints von ca. 22.000 Akzessionen des IPK Gatersleben erstellen. Diese bilden die Basis für die Entwicklung von vier innovativen und komplementären Strategien zur Identifizierung neuer nützlicher Allele oder Gameten: (1) Die 22.000 Akzessionen werden auf Resistenzen gegen die Krankheiten Gelbrost, Braunrost und Ährenfusariose untersucht. Phänotypische sowie Sequenzdaten werden mithilfe eines neuen Algorithmus analysiert, der es ermöglicht, eine nicht stratifizierte Population für Assoziationskartierung (GWAS) zusammenzustellen. Diese Population wird mittels der RenSeq-Technologie sequenziert, um resistenzassoziierte Gene und Allele durch haplotyp-basierte GWAS ausfindig zu machen. (2) Bei der Suche nach neuen Merkmalen liegt der Schwerpunkt auf der genetischen Variation für eine offene Weizenblüte, da dies für die Hybridweizenzüchtung wichtig ist. Unter Anwendung der 'Genomics-based Select-and-Backcross'-Methode werden Hauptgene identifiziert, die für offene Bestäubung verantwortlich sind. (3) Durch die Kombination von molekularer Physiologie und Populationsgenomik wird ein gezieltes Allele-Mining nach Kandidatengenen die an der Stickstoffnutzungs-Effizienz beteiligt sind durchgeführt. (4) Werkzeuge der genomischen Selektion werden beim Pre-Breeding benutzt, um genetische Variation für den Kornertrag aufzuschließen. Die vier Strategien sind in Aktivitäten der Biodiversitätsinformatik eingebettet, um die umfangreichen Daten mit neuen Werkzeugen der Populationsgenomik und der Quantitativen Genetik zu analysieren.
Das Projekt "Sub project: Mineralogical and geochemical studies of impact melt products from the Chesapeake Bay impact structure" wird vom Umweltbundesamt gefördert und von Universität Münster, Institut für Planetologie durchgeführt. USGS and ICDP perform a drilling project into the 35 Ma old, ca. 85-km-sized submarine Chesapeake Bay impact structure, Virginia. This crater is source to the North American tektite strewn field and related microtektites in upper Eocene sediments. This proposal focuses on impact melt products (melt rocks, glass bombs/particles within impact breccias, tektites, microtektites, microkrystites) that originate during different stages of cratering. All named lithologies are supposed to occur at different geological settings in, around, or far off the Chesapeake crater. This gives a unique opportunity to - study the so far rather unconstrained different mechanisms for the origin of the various melts, - get insight into processes taking place in the vapor plume (mixing, high-temperature chemistry, redox conditions), - derive the different cooling paths of impact glasses, and - develop tools to distinguish microtektites from volcanic glass spherules. To reach this goals we intend to - characterize melt and target lithologies by mineralogical and geochemical techniques, - identify precursor rocks of impact glasses by geochemical and isotopic fingerprinting (Rb-Sr, Sm-Nd, REE with TIMS and LA-ICP-MS techniques), - determine volatile content and redox state by a novel complementary approach combining a Directly coupled Evolved Gas Analysing System (DEGAS) with Electron Energy Loss Spectroscopy (EELS) on a transmission electron microscope (TEM).
Origin | Count |
---|---|
Bund | 134 |
Type | Count |
---|---|
Förderprogramm | 134 |
License | Count |
---|---|
open | 134 |
Language | Count |
---|---|
Deutsch | 134 |
Englisch | 40 |
Resource type | Count |
---|---|
Keine | 86 |
Webseite | 48 |
Topic | Count |
---|---|
Boden | 103 |
Lebewesen & Lebensräume | 131 |
Luft | 67 |
Mensch & Umwelt | 134 |
Wasser | 76 |
Weitere | 134 |