Das Projekt "Teilprojekt 9" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Molekulare Biowissenschaften durchgeführt. Konstruktion von Hefen zur C5-Zuckervergärung zur Produktion von Bioethanol und Malat/Fumarat Zur Produktion von Lignozellulose-Ethanol sollen rekombinante Pentose-vergärende Hefen für den industriellen Einsatz konstruiert werden. Hierfür soll das bestehende Know-how auf so genannte Industriehefestämme übertragen werden, welche sich durch eine deutlich höhere Robustheit, Stabilität und Produktivität gegenüber Laborstämmen auszeichnen. Die neuen Hefestämme sollen unter industriellen Bedingungen getestet und durch evolutive Strategien an diese weiter angepasst werden. Neben der Produktion von Bioethanol soll die Produktion von Malat und Fumarat als aus Biomasse herstellbare Funktionsbausteine ('Building Blocks') für chemische Synthesen entwickelt werden. Dazu sollen rekombinante Hefestämme hergestellt werden, die anstelle von Ethanol diese beiden Dicarbonsäuren produzieren. Dazu werden die Hefen mittel der Methoden des Metabolic und Evolutionary Engineerings genetisch modifiziert. Die Produktion von Malat bzw. Fumarat soll mit der Verwertung von Pentosezuckern und der Fermentation von lignocellulosischen Hydrolysaten kombiniert werden.
Das Projekt "Analyse der 5'und 3'nicht kodierenden Regionen des Cherry leaf roll virus" wird vom Umweltbundesamt gefördert und von Universität Berlin (Humboldt-Univ.), Department für Nutzpflanzen- und Tierwissenschaften, Fachgebiet Phytomedizin durchgeführt. Die genetische Heterogenität von Cherry leaf roll virus (CLRV) Isolaten wird grundsätzlich, jedoch nicht ausschließlich, durch die Wirtspflanzenart bestimmt. Zum Beispiel deutet die unterschiedliche phylogenetische Gruppierung eines Himbeer-Isolats nach Analyse verschiedener Genombereiche auf genetische Rekombinationen zwischen CLRV-Isolaten hin, die möglicherweise eine erhöhte Virulenz von CLRV bedingen. Rekombinationsanalysen sollen Hinweise darauf geben, ob die genetische Organisation des Himbeer-Isolates gegenüber anderen CLRV-Isolaten bzw. die RNA-Population innerhalb dieses Isolates hinsichtlich ihrer Sequenz-Stabilität differiert. Das CLRV besitzt ein bipartites Genom mit zwei 3'polyadenylierten RNAs, deren offene Leserahmen am 5' und 3'Terminus jeweils durch eine nicht-kodierende Region (NCR) begrenzt werden. Die Translation der beiden RNAs erfolgt Cap-unabhängig, die Regulationsmechanismen sind aber bisher nicht bekannt. Vermutlich spielen hierbei die nicht kodierenden Regionen der beiden RNAs eine wichtige Rolle, die daher auf ihre Sekundärstrukturbildung und auf translationsassoziierte Sequenzmotive, wie sie für andere Viren bekannt sind, untersucht werden sollen, um ein CLRV-Translationsmodell zu erstellen.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von PLANTA Angewandte Pflanzengenetik und Biotechnologie GmbH durchgeführt. Im Rahmen des Projektes sollen in Zusammenarbeit mit den Projektpartnern und unter Einbeziehung bereits etablierter Techniken Methoden zur Haploideninduktion bei Weizen, Mais und Roggen entwickelt werden. Nach der erfolgreichen Erstellung von Produktionsprotokollen werden Methoden zur Chromosomenverdoppelung der haploiden Pflanzen sowie der flowcytometrischen Ploidieanalyse entwickelt. In diesem Teilprojekt werden der Einfluss und die Interaktion von verschiedenen Faktoren, wie z B Entwicklungsstadien der Mikrosporen, Kulturbedingungen und Einwirkung von chemischen Stoffen, auf die erfolgreiche Regeneration von Mikrosporen zu haploiden Pflanzen untersucht. In späteren Projektphasen werden die Ergebnisse aus den Arbeitspakten der Projektpartner in die Methodenentwicklung einbezogen. Die aus androgenetischen Pollenkulturen generierten Rekombinanten sind aufgrund ihrer vollständigen Homozygotie identisch reproduzierbar. Daraus ergibt sich eine einzigartige Basis zur effizienten Selektion genetisch stabiler Linien (z.B. leistungsfähige Zuchtlinien, nah-isogene oder transgene Linien) unter Berücksichtigung beliebiger wissenschaftlich oder züchterisch relevanter pflanzlicher Eigenschaften.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung durchgeführt. Ziel des Projektes ist die Aufklärung von wesentlichen Prozessen der Initiierung der Pollen-Embryogenese anhand der experimentellen Modelle Gerste und Tabak. Des Weiteren sollen die experimentell erarbeiteten Erkenntnisse bei der Entwicklung von Methoden zur Herstellung reinerbiger Linien von Arabidopsis bzw. von Getreidearten umgesetzt werden. Es kommt ein integrierter Forschungsansatz zur Anwendung, der zeitgemäße Methoden der Zellkultur und der genetischen Transformation mit prozessorientierten Analysen von Transkriptom, und Metabolom sowie der subzellulären Strukturen sich entwickelnder Pollen unter Embryogenese-auslösenden Bedingungen im Vergleich zur normalen Pollenreifung vereint. Die aus androgenetischen Pollenkulturen generierten Rekombinanten sind aufgrund ihrer vollständigen Homozygotie identisch reproduzierbar. Daraus ergibt sich eine einzigartige Basis zur effizienten Selektion genetisch stabiler Linien (z.B. leistungsfähige Zuchtlinien, rekombinante Inzuchtlinien, nah-isogene oder transgene Linien) unter Berücksichtigung beliebiger wissenschaftlich oder züchterisch relevanter pflanzlicher Eigenschaften.
Das Projekt "ERA-IB7 - OBAC: Überwindung energetischer Barrieren bei der acetogenen Umsetzung von CO2" wird vom Umweltbundesamt gefördert und von Universität Ulm, Institut für Mikrobiologie und Biotechnologie durchgeführt. Die Einsatzmöglichkeiten der Gasfermentationstechnologie und die Verwendung von Kohlenstoffdioxid (CO2) als Rohstoff bieten umweltfreundliche Alternativen im Sinne der Wiederaufbereitung von energie- und kohlenstoffreichen Abfallgasen aus der Industrie. Die mikrobielle Fixierung und Umwandlung von CO2 in biologisch hergestellte Rohstoffe ermöglicht zudem die Reduktion des Ausstoßes von Treibhausgasen. Die besondere Gruppe der autotrophen acetogenen Bakterien betreibt einen Fermentationsprozess, der unabhängig von Licht und Sauerstoff ist. Die Energieträger, welche diese Bakterien nutzen, um CO2 zu verwerten, sind Wasserstoff oder Kohlenmonoxid oder eine Mischung aus beiden Energieträgern (Synthesegase). Das Ziel dieses Vorhabens ist die gentechnische Herstellung rekombinanter acetogener Bakterienstämme, welche derzeitige energetische Barrieren überwinden und erhöhte Wachstumsraten und Produktionsleistungen während der Gasfermentation erreichen. Diese optimierten Stämme werden anschließend für eine heterologe Acetonproduktion genutzt. Das Vorhaben ist in aufeinander aufbauende Arbeitspakete gegliedert, in denen rekombinante acetogene Bakterienstämme mittels gentechnischer Methoden hergestellt werden. Zum einen werden Stämme konstruiert, die zusätzlich auf einem Expressions-plasmid die Gene des ech-Clusters tragen. Zum anderen werden Stämme hergestellt, welche die met-Gene plasmidcodiert exprimieren. Die Durchführung der notwendigen Arbeiten erfolgt wie in der Vorhabensbeschreibung geschildert. Die verifizierten rekombinanten acetogenen Bakterienstämme werden an die Verbundpartner (1, 3 und 4) zur weiteren Bearbeitung verschickt. Die besten Stämme werden daraufhin weiter gentechnisch modifiziert und für eine heterologe Acetonproduktion optimiert. Der in der Vorhabensbeschreibung definierte Arbeitsplan sieht das Erreichen von drei Meilensteinen sowie drei Pflichtergebnissen (engl., Deliverables) vor.
Das Projekt "ERA-IB7 - OBAC: Überwindung energetischer Barrieren bei der acetogenen Umsetzung von CO2" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Institut für Mikrobiologie und Genetik - Genomische und Angewandte Mikrobiologie durchgeführt. Die Verwendung von CO2 als Rohstoff für die nachhaltige Produktion von Treibstoffen und Basischemikalien stellt eine umweltfreundliche Alternative zur Nutzung von energie- und kohlenstoffreichen Abfallgasen aus der Industrie dar und bietet die Möglichkeit, den Ausstoß von Treibhausgasen zu reduzieren. Für die Entwicklung von entsprechenden nachhaltigen Prozessen sind acetogene Bakterien besonders vielversprechend, da sie unabhängig von Licht und Sauerstoff die Energieträger H2 oder CO oder eine Mischung beider (Synthesegase) verwenden, um CO2 in höherwertige Produkte umzuwandeln. Hauptziel von OBAC ist es, energetische Barrieren acetogener Bakterien zu überwinden. Hierzu sollen wichtige Vertreter genetisch so verändert werden, dass sie mehr Energie generieren und somit die Produktionsleistung gesteigert wird. Darüber hinaus wird eine Erweiterung der Produktpalette bzgl. industriell relevanter Verbindungen angestrebt. Ein Ziel dieses Teilvorhabens ist es, die genetische Basis zur Erzeugung von Produktionsstämmen durch Genomsequenzierungen eines breiten Spektrums von acetogenen Bakterien zu erweitern. In Kombination mit Transkriptionsanalysen sollen neue Angriffspunkte zur Stammoptimierung und Erweiterung der Produktpalette mittels 'metabolic engineering' identifiziert werden. Diverse acetogene Bakterien sollen sequenziert und auf besondere Genkassetten für die Energiekonservierung untersucht werden, die für rekombinante Produktionsstämme relevant sein könnten. Diese rekombinanten Stämme werden ebenfalls sequenziert und validiert. Transkriptionsanalysen werden allen Verbundpartnern bei der Identifizierung von solchen Genen und Stoffwechselwegen dienen, die auf veränderte Wachstumsbedingungen, insbesondere auf den Einsatz der Gase des Industriepartners Arcelor reagieren. Der Fokus wird dabei auf den rekombinanten Stämmen bzw. Produktionsstämmen sowie den Untersuchungen des Expressionsniveaus von Genen mit Relevanz für die Acetonproduktion liegen.
Das Projekt "Allel-Suche nach Resistenzgenen von Wildgersten mit Hilfe einer 'nested association' (NAM)-Kartierungspopulation" wird vom Umweltbundesamt gefördert und von Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften, Professur für Pflanzenzüchtung durchgeführt. The nested association mapping (NAM) design was recently implemented by Yu et al. (2008) and McMullen et al. (2009) in order to tap into the wealth of genetic diversity which is available for modern elite varieties. The NAM design applies a structured multi-family association mapping approach to localize quantitative trait loci (QTLs) regulating the expression of a Pillen, Ordon, Schweizer: Nested Association Mapping in Barley, 11.09.2009 Page 1 quantitative phenotype. The elegance of the method was recently demonstrated in a Science paper where the genetic architecture of the trait flowering time was successfully dissected in maize using a set of 5,000 NAM lines which were derived from 25 initial crosses (Buckler et al. 2009). During the course of the proposed project, we aim to develop a similar NAM population in barley, using wild barley accessions as donors for genetic variation. Our barley NAM population will consist of 1,500 BC1S4 individuals, derived from 25 families, each containing 60 individuals. The barley NAM population will originate from crosses between the elite barley cultivar 'Barke and 25 wild barley accessions (Hordeum vulgare ssp. spontaneum, Hsp), which were selected from Badr et al. (2000) and represent a large proportion of the genetic diversity present in Hsp. The NAM population will be utilized to identify and characterize exotic genes which participate as QTLs in the regulation of quantitative agronomic traits. For genetic characterization, the NAM population will be genotyped genome-wide with a set of 1,536 barley ILLUMINA SNPs (Rostoks et al. 2006). For phenotypic characterization, the NAM population will be evaluated in regard to pathogen resistance as well as to plant height, leaf and spike morphology. Subsequently, both data sets will be combined in order to localize QTLs which are associated with the phenotypic expression of the traits under study. For this goal, an association mapping study will be carried out as proposed in maize (Buckler et al 2009). Based on our previous findings (Pillen et al. 2003, von Korff et al 2005, 2006), we expect to identify a multitude of new wild barley alleles which may improve pathogen resistance in barley. Effective exotic alleles can, thus, be incorporated into elite breeding programs in order to improve and broaden the genetic base of our modern elite barley gene pool.
Das Projekt "Biologische Sicherheit bei der Nutzung der Gentechnik" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt. An verschiedenen Beispielen (Zellkulturen, 'nackte' DNA, Virusresistenz, Shuttle-Vektoren, Marker-Gene) werden die Risikopotentiale der Gentechnik und die risikorelevanten Wissensluecken aufgezeigt. Daraus werden eine inhaltliche und organisatorische Gesamtkonzeption fuer die Gentechnik-Sicherheitsforschung in der Bundesrepublik entwickelt sowie die Konsequenzen fuer eine Novelierung der Gentechnikgesetzes formuliert
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Phytowelt GreenTechnologies GmbH durchgeführt. P450 Monooxygenasen spielen eine Schlüsselrolle bei der Synthese vieler wichtiger bioaktiver Naturstoffe. Bei Redoxreaktionen mit P450 Monooxygenasen ist neben der Aktivität, Stabilität und Selektivität der Enzyme insbesondere der Bedarf an teuren Cofaktoren zu berücksichtigen, insbesondere wenn NADPH oder NADH als 'Elektronenquelle' in zellfreien Systemen eingesetzt werden. Im Fokus der Arbeiten des Konsortiums steht daher die Realisierung der Ankopplung pflanzlicher Monooxygenasen an einen artifiziellen elektrochemischen und/oder lichtgetriebenen Elektronentransfer. Damit werden die Fragestellungen Substitution der natürlichen Redoxpartner und die kostengünstige Bereitstellung von Reduktionsäquivalenten adressiert. Im Rahmen des Gesamtprojektes sollen die Arbeiten dazu beitragen neuartige biokatalytische Prozesse mit pflanzlichen P450 Monooxygenasen zu ermöglichen. Die Arbeiten der Phytowelt GreenTechnologies GmbH umfassen: a) Identifizierung von geeigneten Genen mit unter Anwendung des phytomining Tools b) Klonierung und rekombinante Expression der Gene in E.coli und Pflanzen c) Systemoptimierung d) Funktionalisierung der Mediatioren in Enzymassays e) Rekombinaten Expression der LHCII und Coexpression den pflanzlicher Monopoxygenasen unter den vorher festgelegten Bedingungen
Das Projekt "Teilprojekt: Etablierung einer Gene Targeting Technik bei Pflanzen" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Botanisches Institut, Molekularbiologie und Biochemie durchgeführt. Das Ziel des hier beschriebenen Vorhabens ist die Etablierung eines Systems zur effizienten sequenzspezifischen Transgen-Integration ('Gene Targeting', GT) ins Pflanzengenom. Trotz vielfältiger Ansätze ist es bis heute nicht gelungen, in Pflanzen eine Technik zu etablieren, mit deren Hilfe durch homologe Rekombination (HR) jedes beliebige Gen effizient modifiziert werden kann bzw. spezifisch Sequenzen an jeder gewollten Stelle im Genom integriert werden können. In verschiedenen Arbeiten an Arabidopsis konnte bisher gezeigt werden, dass die Überexpression von Proteinen aus E. coli bzw. Hefe, welche in die homologe Rekombination involviert sind, zu einem Anstieg der HR und in einem Fall auch zu einer Verbesserung der 'Gene Targeting' - Frequenz führen. Durch unsere bisherigen Arbeiten konnten wir in Pflanzen Homologe von Genen (BRCA1, BARD1 und BRCA2) charakterisieren, die beim Menschen als Brustkrebs- Suppressoren wirken und konnten zeigen, dass ihr Ausfall in Arabidopsis jeweils zu einer starken Reduktion der intrachromosomalen homologen Rekombination in somatischen Zellen führt. Ziel ist es nun, durch Überexpression dieser Proteine - allein oder in Kombination - eine Zunahme der homologen Rekombination über das in Wildtyp-Pflanzen normale Maß hinaus zu erzielen, um damit die Effizienz der sequenzspezifischen homologen Integration von DNA ins Pflanzengenom insoweit zu verbessern, dass diese als Routinetechnik genutzt werden kann.
Origin | Count |
---|---|
Bund | 51 |
Type | Count |
---|---|
Förderprogramm | 51 |
License | Count |
---|---|
open | 51 |
Language | Count |
---|---|
Deutsch | 51 |
Englisch | 13 |
Resource type | Count |
---|---|
Keine | 32 |
Webseite | 19 |
Topic | Count |
---|---|
Boden | 30 |
Lebewesen & Lebensräume | 51 |
Luft | 18 |
Mensch & Umwelt | 51 |
Wasser | 18 |
Weitere | 51 |