API src

Found 5 results.

Related terms

Virus-resistant transgenic plants: ecological impact of gene flow (VRTP IMPACT)

Das Projekt "Virus-resistant transgenic plants: ecological impact of gene flow (VRTP IMPACT)" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Umweltforschung, Lehr- und Forschungsgebiet Ökosystemanalyse (ESA) durchgeführt. The objective of this project is to provide detailed evaluation of the two sources of potential genotypic impact that could result from large-scale cultivation of virus-resistant transgenic plants, and particularly ones expressing viral sequences. Genotypic impact could result from two types of gene flow: one involving recombination between viral sequences transcribed from the transgene and the genome of an infecting virus, and another due to the potential for sexual outcrossing between the transgenic plant and a compatible wild species. In both cases, this requires not only close examination of the interaction of the transgenic plants, on the one hand with the genome of other viruses, and on the other hand with related plant species, but also requires establishment of baselines on the role of these same processes in a non-transgenic context. Thus, the idea of impact as used here only concerns additional, i.e. above borderline, novel effects that could be caused by interaction of the transgenic plants with their biological environment. In order to address these interlocking concerns, the VRTP IMPACT project has been divided into four Workpackages. Each of these will involve collaboration among several participants, and as a result, most of the participants are involved in more than one Workpackage. The first two workpackages (WPs I & II) are organised in a parallel fashion to evaluate the impact of recombination between transgene sequences and those of the genome of two particularly important groups of plant viruses, the potyviruses and the cucumoviruses, which are extremely different in both their biological and molecular properties, and thus may have different aptitudes for recombination in transgenic plants. WPs I & II will centre on comparisons of the outcome of recombination in transgenic plants with that in non-transgenic ones. Since our knowledge of the prevalence in nature of recombinant virus genomes is extremely sparse, this question will be address in a separate workproject (WP III) that will involve molecular epidemiology studies of virus populations in Spain, France. In WP IV, we will examine the impact of plant to plant gene flow from two major crop species where this is known to occur, rapeseed and beet. In both cases, this will involve field and glasshouse studies to evaluate if a virus resistance gene could confer a fitness advantage on the receptor wild or weedy species.

Glufosinat: Metabolismus in transgenen und nicht-transgenen Pflanzengeweben sowie Schicksal im Boden

Das Projekt "Glufosinat: Metabolismus in transgenen und nicht-transgenen Pflanzengeweben sowie Schicksal im Boden" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Umweltforschung, Biologie V, Lehrstuhl für Umweltbiologie und -chemodynamik durchgeführt. Glufosinat (oder Phosphinotricin) ist ein vergleichsweise modernes Herbizid, das seit etwa 25 Jahren in Gebrauch ist. Bei der Verbindung handelt es sich um eine Aminosäure; üblicherweise bezeichnet man das DL-Racemat als Glufosinat, das L-Enantiomer als Phosphinothricin. Die Verbindung ist Teilstruktur eines von den Pilzen Streptomyces viridochromogenes und Streptomyces hygroscopicus produzierten natürlichen Antibiotikums (Tripeptid: L-Alanin-L-Alanin-L-Phosphinothricin). Neben seiner antibakteriellen Wirkung zeigt Glufosinat eine nicht-selektive herbizide Wirkung. Der antibakterielle und herbizide Effekt geht nur vom L-Enantiomer aus; das D-Enantiomer ist inaktiv. Sowohl Glufosinat (Racemat) als auch das Tripeptid (Bialaphos oder Bilanaphos; mit L-Enantiomer) werden als Herbizide vermarktet. Die herbizide Wirkung von Phosphinothricin beruht auf einer Inhibition der Glutaminsynthetase. Glufosinat weist günstige ökotoxikologische Eigenschaften auf, z.B. bezüglich Versickerung, Abbau sowie Toxizität gegenüber Tier und Mensch. Auf Grund dieser Eigenschaften ist Glufosinat ein geeigneter Kandidat zur Herstellung gentechnisch modifizierter Herbizid-resistenter Pflanzen, um Glufosinat auch selektiv - im Nachauflauf - einsetzen zu können. Dazu wurden verschiedene Spezies, wie z.B. die Zuckerrübe, mit dem bar-Gen aus Streptomyces hygroscopicus transformiert. Das bar-Gen codiert für eine Phosphinothricin-N-acetyltransferase, die Phosphinothricin zum nicht herbizid-wirksamen, stabilen N-Acetylderivat umsetzt. Bei entsprechend hoher Expression des bar-Gens resultiert eine Glufosinat-resistente Pflanze. Ein Ziel unseres Forschungsvorhabens war es, den Metabolismus von Glufosinat und der einzelnen Enantiomere (L- und D-Phyosphinothricin) in transgenen und nicht transgenen Pflanzenzellkulturen zu untersuchen. Die transgenen Kulturen, die von der Zuckerrübe (Beta vulgaris) stammten, waren mit dem bar-Gen transformiert, exprimierten demnach die Phosphinothricin-N-acetyltransferase. Sie wurden aus entsprechenden Sprosskulturen initiiert. Daneben wurden nicht-transgene Kulturen von Zuckerrübe, Karotte (Daucus carota), Fingerhut (Digitalis purpurea) und Stechapfel (Datura stramonium) untersucht. In einer zweiten Versuchsserie wurden abgetrennte Sprosse und Blätter von 20 Wildpflanzen auf den Metabolismus von Glufosinat untersucht. Es sollte überprüft werden, ob qualitative und quantitative Unterschiede im Umsatz des Herbizids im Pflanzenreich vorkommen und möglicherweise eine natürliche (teilweise) Resistenz gegenüber Glufosinat existiert. Schließlich wurde das Schicksal des Herbizids im Boden (Abbau, Versickerung) nach Aufbringung des Wirksstoffs in einer handelsüblichen Formulierung auf ein bewachsenes Versuchsfeld im Freiland untersucht.

Einfluss eines rekombinanten humanen P450-Systems auf endogene Inhaltsstoffe in transformierten Pflanzen von Nicotiana tabacum L.

Das Projekt "Einfluss eines rekombinanten humanen P450-Systems auf endogene Inhaltsstoffe in transformierten Pflanzen von Nicotiana tabacum L." wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Umweltforschung, Biologie V, Lehrstuhl für Umweltbiologie und -chemodynamik durchgeführt. Pflanzliche P450-Enzyme besitzen sowohl Aufgaben im Primär- und Sekundärstoffwechsel der Pflanzen als auch in der Metabolisierung von Xenobiotika einschließlich Herbiziden. Da z.B. Mais eine natürliche Resistenz gegenüber dem Triazin-Herbizid Atrazin aufweist, konnten suszeptible Wildpflanzen, die bei Feldanbau neben den Kulturpflanzen aufkommen, durch Anwendung des Herbizids ohne Schädigung der Kulturpflanzen selektiv bekämpft werden (Herbizidselektivität). Kulturpflanzen wie z.B. Tabak und Kartoffel, die keine oder nur eine unzureichende natürliche Resistenz gegenüber einem bestimmten Herbizid besitzen, können durch Agrobacterium tumefaciens-vermittelte Transformation mit einem Säuger-P450-Isoenzym (z.B. CYP1A1 oder CYP1A2) Herbizid-resistent werden. Seit einigen Jahren gibt es in dieser Richtung Bestrebungen, P450-transgene Pflanzen herzustellen. Aufgrund der überlappenden, breiten Substratspezifität des jeweils eingebrachten Säuger-P450-Isoenzyms (Ratte, Mensch) wird in den transgenen Pflanzen meist eine multiple Resistenz gegen verschiedene Herbizide mit unterschiedlichen Strukturen und Wirkmechanismen beobachtet. Vor der Vermarktung von transgenen Pflanzen müssen diese in Feldversuchen getestet werden. Dabei wird die Verträglichkeit des Genproduktes, die Eigenschaften der modifizierten Pflanze, die Expressionsstabilität des eingebrachten Fremd-Gens und mögliche ökologische Auswirkungen untersucht. Zusätzlich sollte neben der Substratspezifität des fremden P450-Isoenzyms gegenüber Xenobiotika getestet werden, ob pflanzliche Sekundärmetaboliten als Substrate in Frage kommen. Außerdem sind mögliche Einflüsse auf den normalen Stoffwechsel der Pflanzen von Interesse, die sich auf den Phänotyp der Pflanzen auswirken können. Z.B. wurde bei Cyp2c14-transformierten Tabak-Pflanzen (aus Kaninchen) eine verstärkte Seneszenz beschrieben, die sich in einem verringertem Chlorophyll-Gehalt, einem erhöhten Gehalt an Abbauprodukten der Lipid-Peroxidation und einem Abbauprodukt des Nornicotins und in einer Abnahme des Nicotin-Gehaltes äußerte. Außerdem wuchsen die Pflanzen langsamer und brauchten mehr Zeit zur Bewurzelung. Dies sind Anzeichen dafür, dass das Einbringen eines Fremd-P450-Gens in Tabak über die oxidative Veränderung der Membranlipide oder -sterole und damit über die Veränderung der Membranstruktur, durch einen hormonellen Eingriff durch Umsetzung eines Brassinosteroids oder die Unterdrückung endogener P450-Gene möglicherweise schwerwiegende metabolische Auswirkungen zur Folge haben kann. Vor diesem Hintergrund wurde untersucht, ob die Agrobakterien-vermittelte Transformation von Tabak mit der cDNA des humanen CYP1A2 Auswirkungen auf den endogenen Nicotin-Gehalt der Pflanzen zur Folge haben. CYP1A2 gehört dabei neben anderen Isoenzymen im Gegensatz zu den Hauptenzymen CYP2A6, CYP2B6 und CYP2D6 zu den Isoenzymen, die Nicotin nur bei hoher Substratkonzentration umsetzen. Nicotin besitzt dabei als natürliches Insektizid eine wichtige ökol u.s.w.

Aufnahme, Metabolismus und Bildung nicht-extrahierbarer Rückstande aus 4-Nitrophenol in Pflanzengeweben

Das Projekt "Aufnahme, Metabolismus und Bildung nicht-extrahierbarer Rückstande aus 4-Nitrophenol in Pflanzengeweben" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Umweltforschung, Biologie V, Lehrstuhl für Umweltbiologie und -chemodynamik durchgeführt. Das Xenobiotikum 4-Nitrophenol kann als Industriechemikalie (Ausgangsverbindung für zahlreiche Substanzen) oder als Metabolit von Pflanzenschutzmitteln (z.B. des Insektizids Parathion) in die Umwelt gelangen. Auf Grund seiner physikochemischen Eigenschaften wird es von Pflanzen aufgenommen. Ziel des Vorhabens war es, das Schicksal der Verbindung in Pflanzengeweben zu studieren. Als Modellsysteme dienten dabei neben ganzen Pflanzen (aseptisch auf Hydrokultur gezogen) insbesondere Zellkulturen (Kallus oder Suspension), wobei die untersuchten Pflanzenspezies Sojabohne (Glycine max), Weizen (Triticum aestivum), Karotte (Daucus carota), Kornrade (Agrostemma githago), Windhafer (Avena fatua) und Stechapfel (Datura stramonium) waren. Neben Zuckerkonjugaten (Mono- und Disaccharide, Malonylglucoside) interessierten vor allem sogenannte nicht-extrahierbare Rückstände von 4-Nitrophenol. Bei letzteren stellt man sich kovalente und nicht-kovalente Bindungen zwischen Xenobiotika und unlöslichen pflanzlichen Makromolekülen, wie z.B. Lignin, Cellulose, Hemicellulose und Pektin, vor. Ein weiteres Ziel des Vorhabens war es zu untersuchen, ob Pflanzen als Senke zu Eliminierung von 4-Nitrophenol in der Umwelt fungieren können.

Transgene Pflanzen-Zellsuspensionskulturen als Modellsystem zur Erforschung der molekularen Mechanismen der Insektizid-Resistenz

Das Projekt "Transgene Pflanzen-Zellsuspensionskulturen als Modellsystem zur Erforschung der molekularen Mechanismen der Insektizid-Resistenz" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Umweltforschung, Biologie V, Lehrstuhl für Umweltbiologie und -chemodynamik durchgeführt. Mit der weltweiten Nutzung von Insektiziden stieg die Anzahl an resistenten Insekten-Arten bis 2006 auf etwa 550 Arten an. Selbst bei gezielter Anwendung von Insektiziden - zur Bekämpfung von Schädlingen in der Landwirtschaft zum Schutz der Ernten und zur Bekämpfung von Krankheitsüberträgern - kommen neben Zielorganismen auch Nicht-Zielorganismen in Kontakt mit den Wirkstoffen. Auf diese Weise entwickeln neben Zielorganismen, wie z.B. der Weißen Fliege, auch Nicht-Zielorganismen, wie z.B. die Taufliege Drosophila melanogaster, Resistenzen. Zu den weit verbreiteten Mechanismen, die Resistenzen bei Insekten auslösen, zählen sowohl die enzymatische Detoxifizierung als auch die Zielort-Unempfindlichkeit. Im ersten Fall begründet sich die Resistenz auf der Tatsache, dass das entsprechende Insekt über ein Enzym verfügt, das in der Lage ist, das betreffende Insektizid mit ausreichend hoher Geschwindigkeit zu Metaboliten umzusetzen, die eine geringere insektizide Wirkung aufweisen. Auf genetischer Ebene bedeutet das, (...) Das Projekt beschäftigt sich mit der P450-Monooxygenase CYP6G1 aus der Taufliege Drosophila melanogaster. Aus genetischen Studien ist bekannt, dass das Cyp6g1-Gen in resistenten Drosophila-Stämmen überexprimiert wird. Eine künstliche Überexpression von Cyp6g1 in Fliegen eines suszeptiblen Drosophila-Stamms führte zur Insektizid-Resistenz. Es wird vermutet, dass das CYP6G1-Enzym die Resistenz des Insekts bewirkt, indem bestimmte Insektizide, wie z.B. Imidacloprid und DDT, durch Metabolisierung detoxifiziert werden. Diese Hypothese soll im Projekt geprüft werden. P450-transgene Tabak-Zellsuspensionskulturen haben sich in unserer Arbeitsgruppe als geeignete in vivo-Systeme zur Untersuchung der Metabolismuskapazität von P450-Enzymen erwiesen. Der gleiche Ansatz wird beim CYP6G1 aus Drosophila melanogaster verfolgt. Im ersten Schritt werden Tabak-Zellsuspensionskulturen mit der cDNA-Sequenz des Cyp6g1 stabil transformiert. Mit den Cyp6g1-transgenen und den unmodifizierten Tabak-Kulturen werden nachfolgend Metabolismusexperimente durchgeführt, wobei z.B. Imidacloprid oder DDT (jeweils in 14C-markierter Form) eingesetzt werden. Durch Vergleich der nicht-transgenen mit der transgenen Tabak-Zellsuspensionskultur kann dann auf die Metabolismusaktivität des CYP6G1-Enzyms bezüglich des eingesetzten Insektizids geschlossen werden. Wichtige Metaboliten können identifiziert und isoliert werden. Der Nachweis, dass das heterolog exprimierte CYP6G1-Enzym das entsprechende Insektizid zu Verbindungen umsetzt, die keine insektizide Wirkung mehr zeigen, stellt dann das letzte Glied in der Beweiskette zur Ursache dieser Insektizid-Resistenz in Drosophila melanogaster dar. Die Prozedur ist analog auf andere Resistenz-Gene (Metabolismus-bedingt) anwendbar. Die resultierenden Erkenntnisse können im günstigen Fall genutzt werden, um (neue) Insektizide zu finden, die vom Resistenzmechanismus unberührt bleiben und deshalb der bestehenden Resistenz entgegenwirken.

1