The World Settlement Footprint (WSF) 3D provides detailed quantification of the average height, total volume, total area and the fraction of buildings at 90 m resolution at a global scale. It is generated using a modified version of the World Settlement Footprint human settlements mask derived from Sentinel-1 and Sentinel-2 satellite imagery in combination with digital elevation data and radar imagery collected by the TanDEM-X mission. The framework includes three basic workflows: i) the estimation of the mean building height based on an analysis of height differences along potential building edges, ii) the determination of building fraction and total building area within each 90 m cell, and iii) the combination of the height information and building area in order to determine the average height and total built-up volume at 90 m gridding. In addition, global height information on skyscrapers and high-rise buildings provided by the Emporis database is integrated into the processing framework, to improve the WSF 3D Building Height and subsequently the Building Volume Layer. A comprehensive validation campaign has been performed to assess the accuracy of the dataset quantitatively by using VHR 3D building models from 19 globally distributed regions (~86,000 km2) as reference data. The WSF 3D standard layers are provided in the format of Lempel-Ziv-Welch (LZW)-compressed GeoTiff files, with each file - or image tile - covering an area of 1 x 1 ° geographical lat/lon at a geometric resolution of 2.8 arcsec (~ 90 m at the equator). Following the system established by the TDX-DEM mission, the latitude resolution is decreased in multiple steps when moving towards the poles to compensate for the reduced circumference of the Earth.
Die Daten resultieren aus der digitalen Erfassung der Waldflächen, differenziert nach 16 Kategorien. Grundlage waren 298 Kartenblätter der zweiten Preußischen Landesaufnahme und der Topographische Karte (Äquidistantenkarte) Sachsen (Territorium Brandenburgs). Der Erfassungsmaßstab ist 1:25000. Die Aufnahme erfolgte durch die Königliche Preußische Landesaufnahme bzw. das Topographische Bureau des Königlichen Generalstabes. Der Aufnahmezeitraum der erfassten Kartenblätter liegt zwischen 1879 und 1902. Besonders hervorzuheben sind die Höhenschichtlinien zur Geländedarstellung und die relativ hohe Genauigkeit nach Einführung des metrischen Systems. Die Karten verfügen über Koordinatenangaben im Rahmen (geographische Koordinaten). Die Originalkarten befinden sich im Besitz der Staatsbibliothek zu Berlin (Preußischer Kulturbesitz) bzw. der Sächsische Landesbibliothek (Staats- und Universitätsbibliothek Dresden).
Abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 10 Meter auf Basis des DGM1. Für die Fläche der Freien und Hansestadt Hamburg (ohne das Gebiet des hamburgischen Wattenmeeres) wurde in 2020 eine Laserscanvermessungen (Airborne Laserscanning) durchgeführt. Die Daten liegen im Lagestatus 310 (ETRS89/UTM) vor, mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 105 cm. In Bereichen von Abschattungen (Brücken), Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig werden vom LGV folgende Rasterweiten angeboten: DGM 1 (Rasterweite 1m), DGM 10 (Rasterweite 10m), DGM 25 (Rasterweite 25m). Eine jährliche Aktualisierung dieser Daten erfolgt über Luftbildbefliegungen. Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung groß- und kleinräumige Anwendungen abgeleitet werden.
Für die Herstellung von digitalen Orthophotos (DOP) erfolgte bis 2019 im 3-Jahres-Rhythmus ein gesonderter Farbbildflug bei voller Belaubung im Sommer für die Fläche der gesamten Stadt Hamburg (ausgeschlossen sind die Wattenmeerinseln). 2022 wurde das Digitale Orthophoto aus einer Satellitenszene abgeleitet. Bodenauflösung: 0,5m Aufnahmedatum: 03. Juni 2022 [Pléiades 1A/B "© CNES (2022), Distribution Airbus DS"] Die Daten aus dem Jahrgang 2022 werden aufgrund von Lizenzbedingungen nicht öffentlich bereitgestellt.
Aktuelle Information: Im Jahr 2023 fand keine Luftbildbefliegung statt. Das Digitale Orthophoto 2023 wurde daher aus mehreren Satellitenszenen abgeleitet. Satellitensystem: WorldView-3 Aufnahmezeitpunkte: 02/23; HH Altengamme: 09/23 GSD: 0,30 m prozessiert auf 0,15 m Das Digitale Orthophoto 2023 unterliegt Lizenzbedingungen und steht nicht zum Download zur Verfügung. [Maxar Products. Dynamic Product © 2023 Maxar Technologies.] DOP Erläuterung: Aus den Luftbildern werden mosaikierte und georeferenzierte, farbige digitale Orthophotos (RGBI) mit unterschiedlichen Auflösungen und Kachelgrößen hergestellt. Orthophotos sind auf Grundlage eines digitalen Geländemodells geometrisch entzerrte Aufnahmen, die das Aussehen eines Luftbildes mit den geometrischen Eigenschaften einer Karte vereinen. Weil sie auch in digitaler Form vorliegen, können sie in unterschiedlichen Maßstäben ausgegeben und wie eine Karte benutzt werden. Objekte, die sich unmittelbar auf der Erdoberfläche befinden, werden lagerichtig dargestellt. Objekte, die über das Niveau der Erdoberfläche hinausragen werden bedingt durch das Herstellungsverfahrens für digitale Orthophotos mitunter nicht lagerichtig wieder gegeben. Besonders geeignet als räumlich exakte, bildhafte Bezugsgrundlage für den Aufbau von Geoinformationssystemen und zur Verknüpfung mit oder als Hintergrundinformation für raumbezogene fachspezifische Daten für Fachinformationssysteme sowie für Raumplanungen aller Art. Anwendungsgebiete sind alle Aufgabenbereiche, für deren Fragestellungen ein Raumbezug erforderlich ist, unter anderem Energie-, Forst- und Landwirtschaft, Verwaltung, Demographie, Wohnungswesen, Landnutzungs-, Regional- und Streckenplanung, Straßenbau und -bewirtschaftung, Facility Management, Verkehrsnavigation und Flottenmanagement, Transport, Bergbau, Gewässerkunde und Wasserwirtschaft, Ökologie, Umweltschutz, Militär, Geologie und Geodäsie, aber auch Kultur, Erholung und Freizeit sowie Kommunikation. RGB (Red Green Blue): Die Bandkombination aus Rot, Grün und Blau bildet die menschliche Farbwahrnehmung nach. Gesunde Vegetation wird grün, urbane Flächen werden weiß / grau und Wasserflächen werden, abhängig der Trübung, blau dargestellt. CIR (Color Infrared): Die Bandkombination aus nahem Infrarot, Rot und Grün hebt die Vegetation hervor. Diese reflektiert aufgrund des Chlorophyllgehalts der Pflanzen im nahen Infrarotbereich besonders stark und wird rötlich dargestellt. Urbane Flächen erscheinen cyan-blau / grau und Wasserflächen dunkelblau.
Bougueranomalie (vollständig topographisch reduzierte Freiluftanomalie) an der Erdoberfläche, d.h. prädizierter Schwerewert minus Normalschwere (Geodetic Reference System 1980) auf Geländehöhe minus vollständiger Effekt der Topographie oberhalb der Nullniveaufläche, gerechnet mit Standarddichte 2,67 g/cm³ und Integrationsradius 100 km (abweichend von den in der Geophysik üblichen 167 km). Die Aktualität des Datenbestandes (2016) entspricht dem des Quasigeoidmodells GCG2016. Der Geodatensatz ist die Grundlage für die Darstellung des Quasigeoids im WMS Schwere. Hierfür wurde das originale Gitter des GCG2016 mit einer Gitterauflösung von 100 m in UTM32-Projektion gesampelt. Dokumentation: https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/wms_schwere.pdf Datenquellen: http://sgx.geodatenzentrum.de/web_public/gdz/datenquellen/Datenquellen_wms_schwere.pdf Schweresystem: International Gravity Standardization Net 1971 (Morelli et al., 1974) Normalschwere: Geodetic Reference System 1980 (Moritz, 1964), keine Berücksichtigung des Atmosphäreneinflusses Niveaureduktion: Direkte Berechnung der Normalschwere als Funktion der geographischen Breite und NHN-Höhe mittels Kugelfunktionsentwicklung bis Grad 8 Bouguer-Plattenreduktion: keine Geländekorrektur: Sphärische Berechnung des vollständigen topographischen Effekts (exkl. indirektem Effekt der Topographie auf die Schwere) bis 100 km, digitales Geländemodell mit Rasterweite 1“ (ca. 25 m), Quadermethode (Forsberg, 1984) im Nahbereich bis 5‘, außerhalb Tesseroidmethode (Grombein, 2013) Reduktionsdichte/-niveau: Festland 2670 kg/m³ / Bathymetrie (Nordsee, Ostsee, Bodensee) 1000 kg/m³, 0 m ü. NHN (DHHN92) Rasterverarbeitung: Interpolation mittels Kollokation (Forsberg et al. 2008), Rasterweite 30“ x 45“, Resampling auf Rasterweite 3,6“ x 5,4“; Projektion auf UTM32-Gitter mit Rasterweite 100 m Einheit: mGal = 10^-5 m/s-2 Aktualität: 2016
Schwereanomalie (Freiluftanomalie) an der Erdoberfläche, d.h. prädizierter Schwerewert minus Normalschwere (Geodetic Reference System 1980) auf Geländehöhe. Die Aktualität des Datenbestandes (2016) entspricht dem des Quasigeoidmodells GCG2016. Der Geodatensatz ist die Grundlage für die Darstellung des Quasigeoids im WMS Schwere. Hierfür wurden die Schweregitter mit einer Auflösung von 100 m in UTM32-Projektion gesampelt. Dokumentation: https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/wms_schwere.pdf Datenquellen: http://sgx.geodatenzentrum.de/web_public/gdz/datenquellen/Datenquellen_wms_schwere.pdf Schweresystem: International Gravity Standardization Net 1971 (Morelli et al., 1974) Normalschwere: Geodetic Reference System 1980 (Moritz, 1964), keine Berücksichtigung des Atmosphäreneinflusses Niveaureduktion: Direkte Berechnung der Normalschwere als Funktion der geographischen Breite und NHN-Höhe mittels Kugelfunktionsentwicklung bis Grad 8 Bouguer-Plattenreduktion: keine Geländekorrektur (nur für die Rasterverarbeitung): Sphärische Berechnung des vollständigen topographischen Effekts (exkl. indirektem Effekt der Topographie auf die Schwere) bis 100 km, digitales Geländemodell mit Rasterweite 1“ (ca. 25 m), Quadermethode (Forsberg, 1984) im Nahbereich bis 5‘, außerhalb Tesseroidmethode (Grombein, 2013) Reduktionsdichte/-niveau (nur für die Rasterverarbeitung): Festland 2670 kg/m³ / Bathymetrie (Nordsee, Ostsee, Bodensee) 1000 kg/m³, 0 m ü. NHN (DHHN92) Rasterverarbeitung: Geländereduktion; Interpolation mittels Kollokation (Forsberg et al. 2008), Rasterweite 30“ x 45“, Resampling auf Rasterweite 3,6“ x 5,4“; Wiederherstellung der Geländereduktion im Raster; Projektion auf UTM32-Gitter mit Rasterweite 100 m Einheit: mGal = 10^-5 m/s-2 Aktualität: 2016
Mittlere Bougueranomalie über eine Basis von 4 km. Diese spezielle Darstellung dient den Vermessungsverwaltungen der Länder als Planungsgrundlage für gravimetrische Messungen im Sinne der Feldanweisung für Terrestrische Gravimetrie (FA-TG, Abschnitt C.4.1.1). Die Aktualität des Datenbestandes (2016) entspricht dem des Quasigeoidmodells GCG2016. Der Geodatensatz ist die Grundlage für die Darstellung des Quasigeoids im WMS Schwere. Hierfür wurde das originale Gitter des GCG2016 mit einer Gitterauflösung von 100 m in UTM32-Projektion gesampelt. Dokumentation: https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/wms_schwere.pdf Datenquellen: http://sgx.geodatenzentrum.de/web_public/gdz/datenquellen/Datenquellen_wms_schwere.pdf Schweresystem: International Gravity Standardization Net 1971 (Morelli et al., 1974) Normalschwere: Geodetic Reference System 1980 (Moritz, 1964), keine Berücksichtigung des Atmosphäreneinflusses Niveaureduktion: Direkte Berechnung der Normalschwere als Funktion der geographischen Breite und NHN-Höhe mittels Kugelfunktionsentwicklung bis Grad 8 Bouguer-Plattenreduktion: keine Geländekorrektur: Sphärische Berechnung des vollständigen topographischen Effekts (exkl. indirektem Effekt der Topographie auf die Schwere) bis 100 km, digitales Geländemodell mit Rasterweite 1“ (ca. 25 m), Quadermethode (Forsberg, 1984) im Nahbereich bis 5‘, außerhalb Tesseroidmethode (Grombein, 2013) Reduktionsdichte/-niveau: Festland 2670 kg/m³ / Bathymetrie (Nordsee, Ostsee, Bodensee) 1000 kg/m³, 0 m ü. NHN (DHHN92) Rasterverarbeitung: Interpolation mittels Kollokation (Forsberg et al. 2008), Rasterweite 30“ x 45“, Resampling auf Rasterweite 3,6“ x 5,4“; Projektion auf UTM32-Gitter mit Rasterweite 100 m; Tiefpassfilterung der Bougueranomalien mit 4 km gleitendem Mittelwert Verwendungszweck: Abschätzung der notwendigen Punktdichte für die Geoidmodellierung entsprechend der Feldanweisung für Terrestrische Gravimetrie (FA-TG) der AdV, Version 1.0, Abschnitt C4.1.1 mit Anlage 8 Einheit: mGal = 10^-5 m/s-2 Aktualität: 2016
Horizontaler Gradient der mittleren Bougueranomalie über eine Basis von 4 km. Diese spezielle Darstellung dient den Vermessungsverwaltungen der Länder als Planungsgrundlage für gravimetrische Messungen im Sinne der Feldanweisung für Terrestrische Gravimetrie (FA-TG, Abschnitt C.4.1.1) Die Aktualität des Datenbestandes (2016) entspricht dem des Quasigeoidmodells GCG2016. Der Geodatensatz ist die Grundlage für die Darstellung des Quasigeoids im WMS Schwere. Hierfür wurde das originale Gitter des GCG2016 mit einer Gitterauflösung von 100 m in UTM32-Projektion gesampelt. Dokumentation: https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/wms_schwere.pdf Datenquellen: http://sgx.geodatenzentrum.de/web_public/gdz/datenquellen/Datenquellen_wms_schwere.pdf Schweresystem: International Gravity Standardization Net 1971 (Morelli et al., 1974) Normalschwere: Geodetic Reference System 1980 (Moritz, 1964), keine Berücksichtigung des Atmosphäreneinflusses Niveaureduktion: Direkte Berechnung der Normalschwere als Funktion der geographischen Breite und NHN-Höhe mittels Kugelfunktionsentwicklung bis Grad 8 Bouguer-Plattenreduktion: keine Geländekorrektur: Sphärische Berechnung des vollständigen topographischen Effekts (exkl. indirektem Effekt der Topographie auf die Schwere) bis 100 km, digitales Geländemodell mit Rasterweite 1“ (ca. 25 m), Quadermethode (Forsberg, 1984) im Nahbereich bis 5‘, außerhalb Tesseroidmethode (Grombein, 2013) Reduktionsdichte/-niveau: Festland 2670 kg/m³ / Bathymetrie (Nordsee, Ostsee, Bodensee) 1000 kg/m³, 0 m ü. NHN (DHHN92) Rasterverarbeitung: Interpolation mittels Kollokation (Forsberg et al. 2008), Rasterweite 30“ x 45“, Resampling auf Rasterweite 3,6“ x 5,4“; Projektion auf UTM32-Gitter mit Rasterweite 100 m; Tiefpassfilterung der Bougueranomalien mit 4 km gleitendem Mittelwert, anschließend Gradientenbildung und Skalierung auf Basislänge 4 km Verwendungszweck: Abschätzung der notwendigen Punktdichte für die Geoidmodellierung entsprechend der Feldanweisung für Terrestrische Gravimetrie (FA-TG) der AdV, Version 1.0, Abschnitt C4.1.1 mit Anlage 8 Einheit: mGal/(4 km) = 10^-5 m/s-2 / (4 km) Aktualität: 2016
(1) Die Grenzen des Nationalparks ergeben sich aus dem beigefügten Kartenwerk, das Bestandteil dieses Gesetzes ist: 1. Digitale Topografische Karte (DTK) im Maßstab 1 : 100 000 (Anlage 2), 2. verkleinerte Amtliche Karte 1 : 5 000 (AK5) im Maßstab 1 : 10 000 (Anlage 3). Die geografischen Koordinaten der Anlagen 2 und 3 sind im geodätischen Referenzsystem WGS 84 sowie als projizierte Koordinaten im Europäischen Terrestrischen Referenzsystem 1989 (ETRS 89) mit der Universalen Transversalen Mercator-Abbildung bezogen auf die Zone 32 N (UTM 32N) dargestellt (Anlage 4); Gleiches gilt für die geografischen Koordinaten in den Anlagen 1 und 6. 3Die vom Nationalparkgebiet umschlossenen Flächen, die keiner der in § 5 Abs. 1 genannten Zonen zugeordnet sind, sind nicht Bestandteil des Nationalparks. (2) Für die Abgrenzung des Nationalparks ist seewärts und in den Mündungstrichtern von Ems, Weser und Elbe sowie in der Jade die Verbindungslinie zwischen den in der Anlage 2 eingetragenen, durch geografische Koordinaten bestimmten Punkten maßgeblich, soweit nicht in den Mündungstrichtern von Elbe und Weser zwischen zwei Koordinatenpunkten die niedersächsische Landesgrenze oder ein Leitwerk verläuft; in diesem Fall wird die Grenze durch die Landesgrenze oder den stromabgewandten Fuß des Leitwerks gebildet. (3) Die landwärtigen Grenzen des Nationalparks sind in den Anlagen 2 und 3 durch Punktlinien dargestellt. 2Auf den in den Anlagen 2 und 3 durch eine unterbrochene Punktlinie gekennzeichneten Grenzabschnitten ist die mittlere Hochwasserlinie maßgeblich. 3Auf den in den Anlagen 2 und 3 durch eine rote Punktlinie gekennzeichneten Abschnitten ist die seeseitige Grenze des Deiches (§ 4 Abs. 3 des Niedersächsischen Deichgesetzes) maßgeblich. 4Für den Verlauf der in den Anlagen 2 und 3 durch eine schwarze nicht unterbrochene Punktlinie gekennzeichneten Grenzen ist die Karte maßgeblich. 5Soweit gemäß Satz 3 die seeseitige Grenze des Deiches die Grenze des Nationalparks bildet, verändert sich diese Grenze mit den zugelassenen Veränderungen des vorhandenen Deiches. 6In diesem Fall macht das für den Naturschutz zuständige Ministerium soweit erforderlich die Anlagen 2 und 3 neu bekannt. Der Datensatz liefert die Grenzen als Vektoren. Die GIS-Daten können unter der Rubrik "Verweise" herunter geladen werden.
Origin | Count |
---|---|
Bund | 467 |
Global | 1 |
Land | 175 |
Wissenschaft | 76 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Bildmaterial | 1 |
Ereignis | 5 |
Förderprogramm | 306 |
Kartendienst | 1 |
Strukturierter Datensatz | 1 |
Taxon | 2 |
Text | 65 |
Umweltprüfung | 5 |
unbekannt | 258 |
License | Count |
---|---|
geschlossen | 107 |
offen | 418 |
unbekannt | 118 |
Language | Count |
---|---|
Deutsch | 406 |
Englisch | 297 |
Resource type | Count |
---|---|
Archiv | 20 |
Bild | 6 |
Datei | 55 |
Dokument | 49 |
Keine | 310 |
Multimedia | 1 |
Unbekannt | 3 |
Webdienst | 29 |
Webseite | 253 |
Topic | Count |
---|---|
Boden | 643 |
Lebewesen & Lebensräume | 465 |
Luft | 400 |
Mensch & Umwelt | 643 |
Wasser | 488 |
Weitere | 565 |