API src

Found 395 results.

Related terms

Digitales Basis-Landschaftsmodell (ATKIS®)

Das ATKIS® Basis-DLM beschreibt die topographischen Objekte der Landschaft im Vektorformat. Die Objekte werden durch ihre räumliche Lage, ihren geometrischen Typ, beschreibende Attribute und Beziehungen zu anderen Objekten (Relationen) definiert. Jedes Objekt besitzt deutschlandweit eine eindeutige Identifikationsnummer (Identifikator). Welche Objektarten das ATKIS® Basis-DLM beinhaltet und wie die Objekte zu bilden sind, ist im ATKIS-Objektartenkatalog (ATKIS®-OK nach AAA Anwendungsschema 7.1.2) festgelegt. Die einzelnen Objektarten werden zu verschiedenen Objektartengruppen (z. B. Siedlung, Verkehr) zusammengefasst, die wiederum zu Objektbereichen (z. B. Tatsächliche Nutzung) zusammengefasst werden.

Verkehrsnetz der Bundeswasserstraßen (VerkNet BWaStr)

Das bundeseinheitliche Verkehrsnetz der Bundeswasserstraßen (VerkNet-BWaStr) ist ein topologisch verknüpfter Vektordatensatz aller Bundeswasserstraßen (BWaStr). Dieser Geobasisdatensatz der Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) dient zur durchgängigen stationsbezogenen Georeferenzierung aller WSV-Daten mit direktem und indirektem Raumbezug. Das Verkehrsnetz BWaStr beantwortet u.a. folgende Fragen: -- Wo verlaufen die Bundeswasserstraßen? -- Wie sind die Strecken stationiert? -- Wie hängen die einzelnen Strecken zusammen? -- Wie sind Fachinformationen Steckenabschnitten zugeordnet? Die Daten umfassen die Bezeichnung der Bundeswasserstraßen (einschließlich der Ident-Nummern) und Kilometerangaben, die Wasserstraßenklassen sowie Layer zur Organisation der WSV-Verwaltungsbezirke der Außenstellen der GDWS, Verwaltungsbereiche der Wasserstraßen- und Schifffahrtsämter (WSA), die Zuständigkeitsbereiche der Außenbezirke (ABz) und weitere Angaben wie die Fließrichtung. Diese Informationen werden über einen Datensatz im ESRI-Shape-Format oder als ESRI-FileGeodatabase als sogenannte dynamisch segmentierte Polylinien zur Verfügung gestellt. Mittels linearer Referenzierung können tabellarisch vorliegende Sachdaten auf Grundlage dieses Datensatzes in einem GIS visualisiert und genutzt werden.

Historical mapping of canals and ditches and the Danube surface water area in the Greater Donaumoos Region over the last 235 years

This dataset focuses on the historical mapping of the Greater Donaumoos fen region using old maps spanning the last 235 years. The main observations include the georeferencing of these historical maps and the subsequent vectorisation of the anthropogenic ditches and the Danube's surface area. The data collection encompasses maps spanning multiple centuries, providing temporal coverage that highlights landscape changes over significant historical periods. The data was collected to enhance archaeological, historical, and ecological research, offering insights into past landscapes and their transformations over time. The method involved digitising old maps and applying geospatial techniques to align them accurately with current geographical coordinates (Schmidt et al., 2024). This process was essential to create vector data representing the historical state of the ditches and the Danube river in this region. The purpose of this data collection is to provide a valuable resource for researchers studying historical land use, environmental changes, and regional development. The georeferencing and vectorisation processes were conducted using QGIS, ensuring precise alignment and accurate representation of historical features. The data generated from this project is crucial for understanding how the Greater Donaumoos fen region has evolved, offering a foundational dataset for further interdisciplinary studies.

Fließgewässer (AWGN)

Alle wasserwirtschaftlich relevanten Fließgewässer Baden-Württembergs sind erfasst. Insbesondere sind dies: - ständig fließende Gewässer; - Gewässer mit einer Länge von über 500 m; - Gewässer, die zur Verortung gewässerbezogener Objekten benötigt werden; - Gewässer, die Gegenstand wasserwirtschaftlicher Planung sind. Die Hierarchie im Gewässernetz wird durch die bundesweit eindeutige Gewässerkennzahl (GKZ) dargestellt. Zur Verortung von Objekten auf der Gewässergeometrie steht die Basisstationierung zur Verfügung. Dies ist eine Längenunterteilung in Kilometerstationen (Passpunkten) und beginnt immer an der Mündung (Ausnahme Rhein). Dazwischen werden Längen als Promille des Passpunktabstandes angegeben. Wenn sich die Geometrie eines Gewässers ändert, werden nur die Passpunkte verschoben, die im veränderten Bereich liegen. Dadurch bleiben alle Stationsangaben außerhalb des veränderten Bereichs unverändert. Aus der Basisstationierung ergibt sich daher nicht die Entfernung auf der Gewässergeometrie zwischen 2 Punkten! Wird diese Entfernung benötigt, kann sie mit üblichen GIS-Werkzeugen ermittelt werden. Das Gewässernetz wird in 3 Varianten bereitgestellt: - Gewässernetz (AWGN-Fluss10)als measured-shape von der Mündung bis zur Quelle (durchgehende Linie). - Gewässername, mit den lokalen Gewässernamen, soweit bekannt - Gewässerordnung gemäß Wassergesetz BW, mit Gewässerstrecken, die entsprechend dem WG (Fassung 2018) definiert sind. Die Bildung von Teilnetzen ist möglich (z.B. GeStruk, biozönotischer Gewässertyp). Die Teilnetze Wasserrahmenrichtlinie und Hochwassergefahrenkarte werden u.a. im WASSERBLICK bereitgestellt.. Aktuell sind über 19.600 Fließgewässer mit einer Gesamtlänge von rd. 45.500 km erfasst. Hiervon befinden sich rd. 400 Gewässer (rd. 5.300 km) außerhalb der Landesgrenzen. Diese wurden lediglich orientierend zur Darstellung des räumlichen Zusammenhangs in das AWGN aufgenommen. Weitergehende Informationen: "https://www.lubw.baden-wuerttemberg.de/wasser/awgn" Dieses Datenangebot wurde mit Sorgfalt erstellt und gepflegt. Dennoch können Mängel, etwa in Vollständigkeit, Richtigkeit und Aktualität, nicht gänzlich ausgeschlossen werden.

Starkregensimulation Wuppertal - Regen vom 29.05.2018 (Version 2.1 | 10/2022)

Der Datensatz umfasst die Ergebnisdaten der Simulation des extremen Starkregenereignisses vom 29.05.2018 in Wuppertal, im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurden in der Simulation die während des extremen Starkregenereignisses vom 29.05.2018 gemessenen Regenmengen verwendet, die ungleichmäßig über das Stadtgebiet verteilt waren, also ein sogenannter Naturregen. Im Zentrum des Unwetters hatte das Regenereignis eine Stärke bis zu Starkregenindex 11 (SRI 11). Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.

Starkregensimulation Wuppertal SRI 10 (Version 2.1 | 10/2022)

Der Datensatz umfasst die Ergebnisdaten der Simulation eines synthetischen Starkregenereignisses mit dem Starkregenindex 10 (SRI 10), im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurde in der Simulation ein extremes Starkregenereignis mit einer Dauer von 1 Stunde und einer Niederschlagsmenge von 90 l/m² in ganz Wuppertal angenommen. Für ein solches Regenereignis kann auf der Grundlage der seit 1960 vorliegenden Regenaufzeichnungen keine statistische Wiederkehrzeit bestimmt werden. Der zeitliche Verlauf des Regenereignisses wurde als Blockregen mit konstanter Intensität modelliert. Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.

Starkregensimulation Wuppertal SRI 6 (Version 2.1 | 10/2022)

Der Datensatz umfasst die Ergebnisdaten der Simulation eines synthetischen Starkregenereignisses mit dem Starkregenindex 6 (SRI 6), im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurde in der Simulation ein außergewöhnliches Starkregenereignis mit einer Dauer von 2 Stunden und einer Niederschlagsmenge von 38,5 l/m² in ganz Wuppertal angenommen. Ein solches Regenereignis besitzt eine 50-jährliche statistische Wiederkehrzeit. Der zeitliche Verlauf des Regenereignisses wurde als Eulerregen Typ II modelliert. Hierbei werden in 5-Minuten-Abschnitten unterschiedliche Intensitäten angenommen, die bis zur maximalen Intensität schnell und gleichmäßig ansteigen, dann stark abfallen und danach allmählich abklingen. Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.

Starkregensimulation Wuppertal SRI 7 (Version 2.1 | 10/2022)

Der Datensatz umfasst die Ergebnisdaten der Simulation eines synthetischen Starkregenereignisses mit dem Starkregenindex 7 (SRI 7), im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurde in der Simulation ein außergewöhnliches Starkregenereignis mit einer Dauer von 2 Stunden und einer Niederschlagsmenge von 42 l/m² in ganz Wuppertal angenommen. Ein solches Regenereignis besitzt eine 100-jährliche statistische Wiederkehrzeit. Der zeitliche Verlauf des Regenereignisses wurde als Eulerregen Typ II modelliert. Hierbei werden in 5-Minuten-Abschnitten unterschiedliche Intensitäten angenommen, die bis zur maximalen Intensität schnell und gleichmäßig ansteigen, dann stark abfallen und danach allmählich abklingen. Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.

Höhenpunkte (Gebrauchshöhen)

Überall dort, wo präzise Höhenangaben gefragt sind, werden Höhenfestpunkte seit je her für vermessungstechnische Aufgaben und Lösungen im Rahmen der Bauvermessung, Landkartenherstellung und Landesvermessung genutzt. Die Höhenfestpunkte dienen in Ihrer Gesamtheit der physikalischen Realisierung des Höhenfestpunktfeldes und damit der Höhenkomponente des geodätischen Raumbezugs im Sinne von § 2 Absatz 2 des Hamburgischen Gesetzes über das Vermessungswesen (HmbVermG) vom 20.04.2005 (HmbGVBl. 2005, S.135). auf dem Gebiet der Freien und Hansestadt Hamburg (FHH). Die Höhenwerte werden im amtlichen Höhenbezugssystem des Deutschen Haupthöhennetzes als Normalhöhen in "Meter über Normal-Höhennull" (NHN) angegeben. Das zugehörige Koordinatenreferenzsystem (CRS) ist seit dem 01.12.2016 das DE_DHHN_16_NH, dessen Höhenhorizont um 14-17 Millimeter niedriger liegt, als die bis 30.11.2016 gültigen Werte des CRS DE_DHHN_92 aus dem Jahre 1992. Das Höhenfestpunktfeld der FHH besteht aus hierarchisch gegliederten Höhennetzen der I. bis IV. Ordnung. Während die ersten drei Ordnungen der Sicherung des Höhenbezugs dienen, ist die IV. Ordnung, das Gebrauchshöhennetz (Höhenpunkte (Gebrauchshöhen)), als letzte Verdichtungsstufe mit rund 2.600 Höhenfestpunkten die Grundlage für alle Vermessungen mit amtlichem Höhenbezug. Die Höhenfestpunkte werden durch den Landesbetrieb Geoinformation und Vermessung über geometrische Nivellements und in einem bedarfsgerechten Punktabstand zueinander bestimmt. Die letzte flächenhafte Überprüfung bzw. Neubestimmung der Höhenwerte fand 2010 statt. Bei Bedarf finden einzelne Nachmessung statt. Die Höhenangabe erfolgt auf Millimeter. Als dauerhafte Vermarkungen dienen überwiegend Metallbolzen an Häuserfassaden oder Brückenfundamenten. In Randgebieten mit wenig Bebauung können z. B. auch in den Boden eingebrachte Granit- oder Betonsteine die Grundlage für Vermarkungen bilden. Die Vermarkungen von Punkten des Höhenfestpunktfeldes sind Vermessungsmarken im Sinne von § 7 des HambVermG. Sie dürfen nur von Vermessungsstellen (das sind der Landesbetrieb Geoinformation und Vermessung sowie die in Hamburg zugelassenen Öffentlich bestellten Vermessungsingenieurinnen und -ingenieure) eingebracht, verändert, wiederhergestellt oder beseitigt werden. Sie dürfen nicht in ihrer Erkennbarkeit und Verwendbarkeit beeinträchtigt werden. Wer Maßnahmen treffen will, durch die Vermessungsmarken, insbesondere deren fester Stand, Erkennbarkeit oder Verwendbarkeit, gefährdet werden können, hat dies rechtzeitig der zuständigen Behörde mitzuteilen. Sind Vermessungsmarken zu verlegen, hat der Verursacher die Kosten hierfür zu tragen. Die Informationen zu den Höhenfestpunkten des Gebrauchshöhennetzes können als „Einzelnachweis Höhenfestpunkt“ unter www.geoportal-hamburg.de (Suchbegriff „Höhenfestpunkte“) von jedermann kostenfrei abgerufen werden. Im Einzelfall kann es vorkommen, dass Höhenfestpunkte örtlich nicht mehr vorhanden oder die „Einzelnachweise Höhenfestpunkt“ nicht mehr aktuell sind. In diesen Fällen wird um Rückmeldung an den genannten Ansprechpartner gebeten. Der LGV haftet nicht für Schäden, die dadurch entstehen, dass die dargestellten Inhalte insbesondere Höhenangaben nicht aktuell sind.

Baumkataster Koeln 2020

<p>Baumkataster  Stand 2020. Inklusive Georeferenzierung und Angaben nach Art, Gattung und Alter der erfassten Bäume.</p> <p><strong>Was bedeuten die Felder?</strong></p> <p><strong>Objekttyp</strong>: Es gibt 14 Objekttypen die wie folgt unterteilt sind:</p> <p>1 NN; 2 Kleingarten; 3 Sportplatz; 4 Kinderspielplatz; 5 Gebäude/Schule/Heim; 6 Straße/Platz; 7 Grünanlage; 8 Friedhof; 9 Biotopflächen; 10 Fluss/Bach; 11 Sonderanlage; 12 Forst; 13 Ausgleichsfläche; 14 Unbekannt</p> <p><strong>Baumbest_1</strong> : Z.B Baumbest:1 : 22P =&gt; 22 P ist die Baumnummer<br /> Gängig sind folgende Buchstabenkürzel:<br /> G = Bäume auf der Seite mit geraden Hausnummern<br /> U = Bäume auf der Seite mit ungeraden Hausnummern<br /> P = Bäume auf einen Platz<br /> M = Bäume auf einem Mittelstreifen<br /> MU = Bäume auf einem Mittelstreifen zur Seite mit den ungeraden Hausnummern<br /> MG = Bäume auf einem Mittelstreifen zur Seite mit den geraden Hausnummern<br /> MM = Bäume auf einem Mittelstreifen in der mittleren Reihe<br /> Ein Teil der Bäume hat auch nur eine Nummer, das ist z.B. auf Spielplätzen der Fall oder wenn in einer Straße nur wenige Bäume stehen.<br /> Die Nummerierung ist teilweise so eingerichtet, dass bei einem Kontrollgang der kürzeste Weg genommen werden kann – dafür sind die Buchstaben teilweise auch hinter die Baumnummern gesetzt.<br />  </p> <p><strong>STAMMVON: </strong>z.B.<strong> </strong>"STAMMVON": 0.0<br /> Bei 2- oder mehrstämmigen Bäumen wird einmal der kleinste und einmal der größte Stammdurchmesser in cm angegeben.<br /> Der kleinste Stammdurchmesser wird bei „Stamm von“ und der größte bei „Stamm bis“<br />  </p> <p><strong>STAMMBIS: </strong>z.B. "STAMMBIS": 50.0<br /> Die ist die Angabe des Stammdurchmessers in cm.<br /> Bei 2- oder mehrstämmigen Bäume erfolgt hierunter der Eintrag des größten Stammdurchmessers</p> <p><strong>KRONE:  </strong>z.B. "KRONE": 8.0<br /> Die ist die Angabe zum Durchmesser der Krone in Meter.</p> <p><strong>H_HE: </strong>z.B. "H_HE": 10.0,<br /> Dies ist die Angabe zur Höhe des Baumes in Meter.</p> <p><strong>Sorte:</strong> z.B.<br /> "Sorte": null,<br /> In der botanischen Nomenklatur unterteilt man Pflanzen in Gattung, Art und Sorte<br /> Bei Pflanzungen in früheren Zeiten wurden hierzu leider keine Angaben gemacht. Bei Neupflanzungen sollen diese Einträge nun standardmäßig durchgeführt werden.<br /> Der Eintrag „null“ gibt an, dass hier keine Sorte eingetragen wurde.<br />  </p> <p>Information</p> <p>Es sind noch nicht alle Bäume erfasst, die Erfassung des gesamten städtischen Baumbestandes wird angestrebt. Der Datensatz wird aus diesem Grunde unregelmäßig aktualisiert. Der Einsatz einer neuen Software ist in Planung und soll mittelfristig auch den Abruf von Daten des Baumkatatsers erleichtern.</p>

1 2 3 4 538 39 40