Das Projekt "Estimation of willingness-to-pay to reduce risks of exposure to heavy metals and cost-benefit analysis for reducing heavy metals occurence in Europe (ESPREME)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung durchgeführt. Heavy metals from different sources accumulate in the environment. From a policy point of view, it has been difficult to tackle the environmental problems due to heavy metals partly because the problem has been viewed from different policy domains (air, water, soils etc.). Thus, it is not guaranteed that the policy mix applied under environmental regulation is optimal. A systems analysis would be required to define the sources of heavy metals, how they are dispersed in the environment and which adverse effects they might cause on human and ecosystems health. From a policy point of view, it is also important to identify what kinds of policy responses would be most cost-effective to reduce the impacts of heavy metals. Such information is required for carrying out cost-benefit analyses of reducing the occurrence of heavy metals in our society. Identifying the benefits would include a monetary valuation of the impacts with contingent valuation (CV) approaches (e.g. assessing the willingness-to-pay, WTP). The focus of the work described will be on priority metals, which are mercury, cadmium, chrome, nickel, arsenic and lead. Core aim of the research is to carry out cost effectiveness (CEA) and cost-benefit analyses (CBA) for reducing the heavy metals occurrence, in the EU Member States and candidate countries, including damage assessment to the environment and human health in the long term following the impact pathway analysis which assesses the impacts and damages of pollutants from their emissions over their dispersion to exposure and impacts. Finally, a feasibility study will be conducted to identify the potentials, strengths and weaknesses and uncertainties of currently available macro-economic models to identify further research needs in this field.
Das Projekt "Mechanistic effect models for the ecological risk assessment of chemicals (CREAM)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Ökologische Systemanalyse durchgeführt. There is widespread concern about how production and use of chemicals affect the environment. Yet food production and benefits of chemical products are vital for the functioning of European societies. In order to ensure sustainable use, EU regulations require extensive risk assessment before a chemical is approved for use. Current risk assessments focus on risk at the level of individual organisms, but according to EU directives the protection goal aims at achieving sustainable populations. Population-level effects depend not only on exposure and toxicity, but also on important ecological factors that are impossible to fully address empirically. Mechanistic effect models (MEMs) enable the integration of these factors, thus increasing the ecological relevance of risk assessments as well as providing vital understanding of how chemicals interact with ecosystems. Such understanding is crucial for improving risk mitigation strategies and ecosystem management. So far, however, regulators and industry have lacked understanding of the potential benefits that MEMs can deliver, and academics have been inconsistent in the approaches applied. This has led to scepticism about models, preventing a wider use of MEMs in risk assessment. Examples clearly demonstrating the power of MEMs for risk assessment are urgently needed, and industry, academia and regulatory authorities across Europe need scientists that are trained in both MEMs and regulatory risk assessment. CREAM will develop and experimentally validate a suite of MEMs for organisms relevant for chemical risk assessments. The consortium includes the main sectors involved (industry, academia, regulators) and will formulate Good Modelling Practice that will be followed in all individual projects, thus leading to consistency and transparency. CREAM will provide world class training for the next generation of ecological modellers, emphasizing transparency and rigorous model evaluation as core elements of the modelling process.
Das Projekt "Development of macro and sectoral economic models aiming to evaluate the role of public health externalities on society (DROPS)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung durchgeführt. The project aims to provide a full-chain analysis related to impact of health protection measures related to priority pollutants as identified by the Environment and Health Action Plan (EHAP), to support the development of cost effective policy measures against pollution related diseases and their wider impacts. The project will achieve this through extending and further developing existing methodologies, models and data to provide an impact-pathway-based model for evaluation of the role of public health externalities on society. The model will be made operational for the selected compounds. Specifically, the objectives are related to the following pollutants: ozone, heavy metals (mercury, cadmium, arsenic, nickel, lead), polychlorinated biphenyls (PCBs), dioxins and indoor air pollution. Since a number of these compounds is carried on particles, PM may be used for some analyses. Main deliverables from the project will include evaluation of a number of emission scenarios using a cost-benefit analysis and incorporating macro-economic modelling. A coherent set of methodologies covering the indicated priority pollutants will be developed and applied in this evolution. The project objectives will be achieved in 7 work packages. WP 1 will extend current policy-relevant emission scenarios to cover all the targeted pollutants or pollution situations, and will provide data on costs of measures. WPs 2 and 3 will review latest research and incorporate information on dose/exposure/concentration - response relationships for health and non-health benefit endpoints of the targeted pollutants. They will also provide monetary valuation data. Based on WPs 1-3 and on macroeconomic analyses done in WP6, WP 4 will develop an integrated tool for the cost benefit assessment, which will be implemented in WP5. WP5 will also expand datasets created in WPs 1-3 and 6 with environmental information, to provide coherent input into the modelling. Prime Contractor: Norsk institutt for Luftforskning; Kjeller; Norway.
Das Projekt "Knowledge Assessment and Sharing on Sustainable Agriculture (KASSA)" wird vom Umweltbundesamt gefördert und von Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V. durchgeführt. Conventional agriculture encompasses about half of the agricultural land territory of the UE countries; its negative impacts on the environment and the basic natural resources are recognised. Growing concerns of the society related to the environment deterioration such as water and food contaminations, livestock epidemics... compel to explore new ways able to improve the sustainability of the current farming systems. Alternative agricultural practices, technologies and approaches in support of sustainable agriculture have already been researched, developed, tested and implemented during the second half of the 20th century, in Europe but mainly in North and South America and Australia; they span million hectares. Learning from the results of theses experiences and researches and sharing lessons will undoubtedly contribute to define ways and tools able to orient European policy on sustainable agriculture development. KASSA proposal intends to build up a comprehensive knowledge base on sustainable agricultural practices, approaches and systems in support of European stakeholders: farmers and professionals, researchers and policy makers at local, national, European and global level. KASSA involves a critical mass of skilled partners dispatched up into four platforms: Europe, the Mediterranean, Asia and Latin America. It will be achieved through successive work sequences starting with a comprehensive inventory of existing results then continuing with a progressive refinement of the findings that alternate critical analysis and sharing of the results of each platform. Prime Contractor: Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement; Montpellier; France.
Das Projekt "Computerised Video Camera Image Analysis for Monitoring Pollution in Water (BLUEWATER)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. The Research Group Satellite Oceanography of the Institute of Oceanography, University of Hamburg, is participating in the joint international project BLUEWATER, a 30-months investigation of marine pollution monitoring using video camera systems. Bluewater is partially funded by the European Commission's Information Society Technologies Programme, project number IST-1999-10388. Project Objectives: BLUEWATER uses video cameras and image analysis for cionstant monitoring/early warning of pollution in water. Anthropogenic/biogenic slicks (from hyydrocarbons, fish oil, algal bloom, bacteria etc.) löeave surface signatures by damping of wave motions which the system will detect in concentrations of 1 to 8 mg/m2. Suspended solids damp waves detectable at 100 mg/litre. The major random cause of high pesticide & heavy metal levels (5 to 7 orders of magnitude) is from accumulation by biogenic slicks, detectable as above. Pollutant presence detected by comparing wavescape with normalö water surface for similar conditions (wind, rain, tide, depth etc.) Experimental data gathered in tanks and open sea used to build image analysis algorithms. The project will offer sophisticated HCI and prediction and analysis functionality. Installations linked to riggedised display terminals on which web pages/video run for publicity/information.
Das Projekt "ALARM - Abschätzung großskaliger Umweltrisiken mit getesteten Methoden - TTC" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Biozönoseforschung durchgeführt. Based on a better understanding of terrestrial and freshwater biodiversity and ecosystem functioning ALARM will develop and test methods and protocols for the assessment of large-scale environmental risks in order to minimise negative direct and indirect human impacts. Research will focus on assessment and forecast of changes in biodiversity and in structure, function, and dynamics of ecosystems. This relates to ecosystem services and includes the relationship between society, economy and biodiversity. In particular, risks arising from climate change, environmental chemicals, biological invasions and pollinator loss in the context of current and future European land use patterns will be assessed. There is an increasing number of case studies on the environmental risks subsequent to each of these impacts. This yields an improved understanding on how these act individually and affect living systems. Whereas the knowledge on how they act in concert is poor and ALARM will be the first research initiative with the critical mass needed to deal with such aspects of combined impacts and their consequences. So far the ALARM consortium combines the expertise of 54 partners from 26 countries (19 EU, Bulgaria, Romania, Israel, Switzerland, Russia, Chile, and Argentina). Within this call we propose to include 16 new TTC partners from Russia, Belarus, China, South-Africa, India, Croatia, Ukraine, Serbia & Montenegro, The Philippines, Bolivia, Guatemala, and Mexico, in order to complement expertise and geographical coverage of the existing consortium.
Das Projekt "Teilprojekt 1: Rebound-Schulung für Gebäudeenergieberater (SPREAD)" wird vom Umweltbundesamt gefördert und von Universität Kassel, Center for Environmental Systems Research durchgeführt. Das Ziel des Teilprojektes besteht in der transdisziplinären Integration der Forschungsergebnisse, die von den vier Projekten EMIGMA, KlimaAlltag, Rebound und SPREAD im Rahmen der SÖF-Forschung generiert worden sind. In dem Teilprojekt werden parallel zu den drei anderen Teilprojekten drei Teilziele bearbeitet: (1) Integration der Ergebnisse zu individuellem Umwelthandeln zum Klimaschutz aus den vier beteiligten Projekten, (2) Überprüfung der Ergebnisse hinsichtlich Übertragbarkeit und der interdisziplinären Anschlussfähigkeit, (3) Transdisziplinäre Integration des generierten Handlungswissens in zwei Themenfeldern. Das CESR wird in diesem Rahmen die Ergebnisse des SPREAD-Projekts einbringen und weiterentwickeln. Bei AP 1 wird sich das CESR an der Erstellung der Integrationsmatrix mit den im SPREAD-Projekt erarbeiteten theoretischen und praktischen Erkenntnissen beteiligen. Für AP 2 sind schwerpunktmäßig eine an die Diskussion der Matrix anschließende Modellierung der räumlichen und lebensstilbezogenen Muster und Effekte sowie eine Erörterung dieser Ergebnisse hinsichtlich einer Anbindung an den natur- und technikwissenschaftlichen Klimadiskurs vorgesehen. In AP 3 beteiligte sich das CESR am Themenbereich B und bringt psychologisches Wissen in die Schulung der Gebäudeenergieberater ein.
Das Projekt "Assessing and forward planning of the Geodetic And Geohazard Observing Systems for GMES applications (GAGOS)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Substantial improvement of our present knowledge of Earth System dynamics is paramount for the development of reliable strategies for actions vital to the human society in terms of achieving sustainable development and ensuring security. This requires for the various system components long-term integrated global data series from a large variety of sensors and networks combined with high performance rapid computing and a uniform and efficient access to distributed data archives and data information systems. The SSA proposed here aims (1) at assessing the status quo situation of two major components of the Earth observing system, namely the global geodetic and global geohazards observing systems as indispensable prerequisites for the consistent global monitoring of the Earth system environment and security aspects of population and (2) identifying deficiencies and gaps in both components and providing advice for the implementation of necessary adaptations and potential new developments in network-, shared computing-, and information/data management task for the observing techniques involved.
Das Projekt "Sonderforschungsbereich SFB 564: Nachhaltige Landnutzung und ländliche Entwicklung in Bergregionen Südostasiens - F 1.3: Ökonomische Bewertung von Umweltverbesserungen in Nordthailand und Nordvietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim (796), Sonderforschungsbereich 564 Nachhaltige Landnutzung und ländliche Entwicklung in Bergregionen Südostasiens durchgeführt. Research in the third phase follows two main objectives: the empirical objective is the assessment of the social benefits accruing from a flood control program in the uplands to the population of the city of Chiang Mai. Since current upland farming techniques result in high surface runoffs and, therefore, increase the frequency of flooding of the river Ping area, a CVM study with the population of Chiang Mai will be conducted in order to value the benefits from alternative farming techniques leading to water and soil conservation and, therefore, to less frequent flooding. In the light of the proposed scenario there is quite a number of methodological and theoretical objectives that are pursued by the research project according to the following guidelines: (1) to test the validity of the methodological results of F1.2 by applying them in a broader socio-economic context, and (2) to develop standardized procedures for the development of CVM scenarios and survey designs which are suitable for environmental valuation using the cost-saving mail survey approach without loss of reliability. In Vietnam a CVM study will be conducted aiming at an adaptation of CVM to the specific socio-economic and cultural background of a post-socialist society in transition to market economy.
Das Projekt "BioDisc3: Verwertbarkeit von Polyphenolen aus Rückständen der Olivenölproduktion" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Straubing, Lehrstuhl für Rohstoff- und Energietechnologie durchgeführt. Die Herstellung von Olivenöl ist wirtschaftlich eine der bedeutendsten Folgeindustrien des Agrarsektors der Mittelmeerländer. Die dabei anfallenden Reststoffe (Fleisch der gepressten Oliven, Wasser)stellen in der teils ariden Region ein akutes Problem dar, weil es in Kläranlagen schlecht oder gar nicht aufbereitbar ist. In den Abfällen der Olivenindustrie sind Substanzen enthalten, die auch in den letztlichen Produkten (Öl) sehr erwünscht sind und zu ihrem Wert beitragen. Diese sog. Polyphenole sind Antioxidantien und wirken vorbeugend gegen eine ganze Reihe von Zivilisationskrankheiten, z.B. Verminderung von koronarer Herzkrankheit. Pflanzliche Antioxidantien haben auch einen Wert als Konservierungsmittel und können so Vorbild für eine technische Verwendung sein. Diese Verwendungen weiter zu betreiben, erfordert neben weiterer medizinischer Erforschung auch technologische Anstrengungen auf dem Gebiet der Extraktionsmethoden. In einer Zusammenarbeit mit dem Galilean Society R&D Center, Forschungs- und Entwicklungszentrum Shefa Amr, Israel, werden diese Probleme anwendungs- und produktionsorientiert bearbeitet. Anschließende Produktformulierungen bedienen Vermarktungsinteressen.
Origin | Count |
---|---|
Bund | 31 |
Type | Count |
---|---|
Förderprogramm | 31 |
License | Count |
---|---|
open | 31 |
Language | Count |
---|---|
Deutsch | 31 |
Englisch | 29 |
Resource type | Count |
---|---|
Keine | 18 |
Webseite | 13 |
Topic | Count |
---|---|
Boden | 28 |
Lebewesen & Lebensräume | 28 |
Luft | 24 |
Mensch & Umwelt | 31 |
Wasser | 23 |
Weitere | 31 |