Dem Deutschen Wetterdienstes (DWD) zufolge war das Jahr 2020 mit einer Jahresmitteltemperatur von 10,4 °C, die nur knapp unter der des bislang wärmsten Jahres 2018 (10,5 °C) lag, das bisher zweitwärmste Jahr in Deutschland seit dem Beginn der regelmäßigen Aufzeichnungen im Jahr 1881. Mit Ausnahme des Monats Mai lagen die Temperaturen aller Monate deutlich über dem Durchschnitt. Die ersten Sommertage (Tage mit einer Maximaltemperatur ≥ 25 °C) waren am 17. April in Mittel- und Süddeutschland zu verzeichnen. Insgesamt wurden 9 der 10 wärmsten Jahre im 21. Jahrhundert aufgezeichnet. Die davon 4 wärmsten Jahre lagen allein in der zurückliegenden Dekade 2011 bis 2020 und trugen dazu bei, dass diese in Deutschland die wärmste seit Beginn der Wetteraufzeichnungen ist. Das verdeutlicht den rasanten Temperaturanstieg, der sich insbesondere innerhalb der letzten Jahrzehnte vollzogen hat. Der Mensch hat daran einen wesentlichen Anteil. Neben natürlich ablaufenden Prozessen ist es die Verbrennung fossiler Energieträger, die dazu führt, dass große Mengen an Kohlenstoffdioxid direkt in die Atmosphäre freigesetzt werden. Ebenso wirken sich massive Landnutzungsänderungen wie die Abholzung von Wäldern, die Trockenlegung von Mooren und umfangreiche Flächenversiegelung regional aber auch global auf das Klima aus. Klimaprojektionen dienen dazu, die weitere Entwicklung des Klimas in der Zukunft abzuschätzen. Dabei wird die wahrscheinliche Einflussnahme durch den Menschen berücksichtigt. Gemäß der Stärke des angenommenen Einflusses werden Szenerien oder „Konzentrationspfade“ (engl. Representative Concentration Pathways – RCPs) entwickelt. Beim Szenario RCP 8.5 wird davon ausgegangen, dass die Einflussnahme durch den Menschen auch weiterhin „so wie bisher“ erfolgt. Die Zahlenangabe besagt dabei, dass auf der Erde im Jahr 2100 in Folge eines positiven Strahlungsantriebs 8,5 W/m 2 „zusätzliche Energie“, verglichen mit dem vorindustriellen Niveau, zur Verfügung stehen wird, wodurch eine Erwärmung der bodennahen Luftschicht erfolgt. Dies zieht eine Reihe sich gegenseitig ungünstig beeinflussender globaler Wirkungen nach sich. Ein wesentlicher Punkt ist, dass ein Großteil dieser zusätzlichen Energie in den Ozeanen gespeichert wird. Neben der thermischen Ausdehnung in Folge der Erwärmung trägt das Abschmelzen der polaren Eiskappen, bzw. Eisschilde zu einem Anstieg des Meeresspiegels bei. An der Nordseeküste ist seit Beginn regelmäßiger Pegelaufzeichnungen ein Anstieg des mittleren Meeresspiegels um 2 bis 4 mm pro Jahr zu beobachten. Wissenschaftler gehen davon aus, dass sich dieser Trend in der Zukunft fortsetzen wird. Die globale Erwärmung bewirkt außerdem, dass Permafrostböden auftauen. Dabei wird das klimawirksame Gas Methan freigesetzt, welches wiederum die Erderwärmung vorantreibt. Einer aktuellen Veröffentlichung des Copernicus Climate Change Service zufolge war das Jahr 2020 global das wärmste Jahr seit Beginn der Aufzeichnungen und das sechste in einer Folge außergewöhnlich warmer Jahre beginnend mit 2015. Das macht die Dekade 2011 bis 2020 zur wärmsten Dekade, die bislang beobachtet wurde. Im Vergleich zum vorindustriellen Niveau (1850 bis 1900) hat sich die Lufttemperatur um etwa 1,25 °C erhöht. Die größten Temperaturabweichungen vom Mittelwert der Referenzperiode 1981 bis 2010 erreichten über 6 °C über der Arktis und Nordsibirien. Unter der Annahme des RCP8.5-Szenarios wird die global gemittelte Oberflächentemperatur bis zum Jahr 2100 um 2,6 bis 4,8 °C ansteigen. Die höchsten Erwärmungsraten werden über den Kontinenten und an den Polkappen auftreten. Damit verbunden wird der Meeresspiegel global um 45 bis 82 cm ansteigen. In Deutschland ist das Jahresmittel der Lufttemperatur seit 1881 um durchschnittlich 1,6 °C angestiegen. Der Temperaturanstieg ist jedoch regional unterschiedlich stark ausgeprägt. Für die nahe Zukunft (2021 bis 2050) ist unter den Bedingungen des RCP8.5-Szenarios ein weiterer Temperaturanstieg von 0,8 bis 2,3 °C zu erwarten, für den Zeithorizont 2071 bis 2100 liegen die Ergebnisse bei 2,7 bis 5,2 °C. Am stärksten werden die süddeutschen Regionen von diesen Temperaturerhöhungen betroffen sein. Mit der allgemeinen Temperaturzunahme werden die mit Wärme verbundenen Extreme zunehmen und die mit Kälte verbundenen Extreme abnehmen. Im Berliner Raum ist die durchschnittliche Jahresmitteltemperatur seit Beginn der Aufzeichnungen im Jahr 1881 um ca. 1,3 °C angestiegen. Im Jahr 2020 war Berlin mit einer Jahresdurchschnittstemperatur von 11,4 °C das mit Abstand wärmste Bundesland. Für die nahe Zukunft (2013 bis 2060) wird – verglichen mit dem Referenzzeitraum 1971 bis 2000 – für das RCP8.5-Szenarion eine Zunahme der durchschnittlichen Tageshöchsttemperatur von 1,2 bis 1,9 °C erwartet. Bis zum Ende des 21. Jahrhunderts wird sich die Temperaturzunahme fortsetzen, sodass die Tageshöchsttemperaturen dann 2,9 bis 3,7 °C mehr als im Referenzzeitraum betragen können. In den Wintermonaten werden trotz der generellen Temperaturerhöhung aufgrund interannueller Schwankungen auch gegen Ende des Jahrhunderts Kälteereignisse auftreten. Diese werden jedoch zunehmend seltener vorkommen. Abbildungen: Änderung der Variable “Tageshöchsttemperatur” für Berlin (Gitterzelle Dahlem) – Zeitreihen der CORDEX-Modellergebnisse (Abb. 1), Verteilung der absoluten Temperaturänderungen (Abb. 2) und die über alle betrachtete Gitterzellen aggregierte Änderung der Mehrheit der Modelle; (Tabelle). Quellen: AFOK-Hauptbericht Die Niederschlagsentwicklung abzuschätzen ist mit großen Unsicherheiten behaftet. Der globale Niederschlag hat eine sehr große räumliche und zeitliche Variabilität. Über Europa haben die Niederschläge im letzten Jahrhundert um 6 bis 8 % zugenommen, wobei die Zunahme mehrheitlich (10 bis 40 %) über Nordeuropa erfolgte und im Mittelmeerraum und Südeuropa ein Rückgang um bis zu 20 % zu verzeichnen war. Im RCP8.5-Szenario wird sich diese deutliche Zweiteilung der Niederschlagsentwicklung über Europa bis zum Endes des 21. Jahrhunderts verstärken. In den Sommermonaten werden die Niederschläge jedoch über ganz Europa abnehmen. In Deutschland fielen in der Referenzperiode 1961 bis 1990 durchschnittlich 789 mm (das entspricht 789 Litern pro Quadratmeter) Niederschlag pro Jahr. Bezogen auf diesen Zeitraum hat sich die jährliche Niederschlagshöhe innerhalb der vergangenen 135 Jahre um etwa 11 % erhöht. Die größten Jahresniederschlagshöhen werden in den Alpen mit durchschnittlich 1.935 mm erreicht. In 2020 fielen die Niederschläge jedoch in der gesamten Bundesrepublik das dritte Jahr in Folge zu gering aus. Berlin gehört mit schwankenden Jahresniederschlagshöhen zwischen 510 und 580 Litern pro Quadratmeter (l/m 2 ) bundesweit zu den Regionen mit den geringsten Niederschlägen. Etwa 2/3 der Tage im Jahr sind niederschlagsfrei. Die längsten Trockenphasen dauerten im Zeitraum 1971 bis 2000 zwischen 22 und 26 Tagen an. Im Jahr 2020 war Berlin mit rund 492 l/m 2 die trockenste Region Deutschlands. Für die Zukunft wird basierend auf dem RCP8.5-Szenario im Frühling und Winter eine Zunahme der Niederschlagssummen angenommen, die sich zum Ende des Jahrhunderts verstärkt. Ebenso werden die Niederschläge im Herbst in ferner Zukunft (2071 bis 2100) zunehmen. Für die Sommermonate können keine eindeutigen Aussagen getroffen werden. Insbesondere die Darstellung von Starkregenereignissen wird durch die räumliche Variabilität von Niederschlagsereignissen und das relativ seltene Auftreten starker Niederschläge erschwert. Für die Wintermonate wird im Zuge des allgemeinen Erwärmungstrends davon ausgegangen, dass die Niederschläge, die in Form von Schnee auftreten, in naher Zukunft (2031 bis 2060) um ca. 30 bis 40 % und bis zum Ende des 21. Jahrhunderts um etwa 60 bis 70 % zurückgehen werden. Abbildungen: Relative Änderung der jährlichen gemittelten Niederschlagssummen für Berlin (Gitterzelle Dahlem) – Zeitreihen der CORDEX-Modellergebnisse (Abb. 3), Verteilung der relativen Häufigkeitsänderungen (Abb. 4) und die über alle betrachtete Gitterzellen aggregierte Änderung der Mehrheit der Modelle (Tabelle). Quellen: AFOK-Hauptbericht Deutsche Koordinierungsstelle des Weltklimarates “Intergovernmental Panel on Climate Change (IPPC)” The Intergovernmental Panel on Climate Change (IPCC) Copernicus Klimaprojektionen für Deutschland auf der Website des Deutschen Wetterdienstes Klimaforschung am Helmholtz-Zentrum für Umweltforschung GmbH – UFZ Klimageographie an der Humboldt-Universität zu Berlin Institut für Ökologie, Fachgebiet Klimatologie an der Technischen Universität Berlin Institut für Meteorologie, Fachbereich Geowissenschaften an der Freien Universität Berlin
Grundlagen des Klimawandels Seit der Industrialisierung steigt die durchschnittliche globale Lufttemperatur in Bodennähe. Wissenschaftliche Forschungen belegen, dass wir Menschen für den raschen Temperaturanstieg der letzten 100 Jahre verantwortlich sind. Deshalb sprechen wir von einer anthropogenen – vom Menschen verursachten – Klimaänderung. Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle, Erdöl und Erdgas) und durch großflächige Entwaldung wird Kohlendioxid (CO 2 ) in der Atmosphäre angereichert. Land- und Viehwirtschaft verursachen Emissionen von Gasen wie Methan (CH 4 ) und Distickstoffmonoxid (Lachgas, N 2 O). Kohlendioxid, Methan und Lachgas gehören zu den treibhauswirksamen Gasen. Eine Ansammlung dieser Gase in der Atmosphäre führt in der Tendenz zu einer Erwärmung der unteren Luftschichten. Informationen zu den Ursachen von Klimaänderungen, zur Zunahme von Treibhausgasen in der Atmosphäre und zum Treibhauseffekt (natürlich und anthropogen ) finden Sie auf der Seite Klima und Treibhauseffekt . Wir stellen auf der Seite Weltklimarat den Zwischenstaatlichen Ausschuss für Klimaänderungen – IPCC (Intergovernmental Panel on Climate Change) kurz vor. Zudem gibt es eine Übersicht zu den Erkenntnissen der letzten IPCC-Sachstandsberichte. Diese Berichte widmen sich den wissenschaftlichen Grundlagen der anthropogenen (durch den Menschen verursachten) Klimaänderung , den beobachteten Klimaänderungen und -folgen, den Projektionen künftiger Klimaänderungen, den Maßnahmen zur Minderung der Emissionen treibhauswirksamer Gase sowie den Maßnahmen zur Anpassung an projizierte (für die Zukunft berechnete) Klimaänderungen. Seit dem vergangenen Jahrhundert erwärmt sich das Klima, wie wir aus Beobachtungs- und Messdaten wissen. Das globale Mittel der bodennahen Lufttemperatur stieg deutlich an, Gebirgsgletscher und Schneebedeckung haben im Mittel weltweit abgenommen und Extremereignisse wie Starkniederschläge und Hitzewellen werden häufiger. Mehr zu beobachteten Klimaänderungen erfahren Sie auf der Seite Beobachteter Klimawandel . Die Ausmaße und Auswirkungen der zukünftigen Klimaänderungen können nur durch Modellrechnungen nachgebildet werden, da vielfältige und komplexe Wechselwirkungen berücksichtigt werden müssen. Durch die Modellierung verschiedener denkbarer Szenarien lassen sich mögliche zu erwartende Klimaänderungen für das 21. Jahrhunderts ableiten. Auf der Seite Zu erwartende Klimaänderungen bis 2100 können Sie sich über mögliche Entwicklungen informieren. Die Themen Klimawandel und Klimaänderung sind sehr komplex und uns erreichen daher regelmäßig Fragen zu grundsätzlichen Hintergründen des Klimawandels. Auf der Seite Häufige Fragen zum Klimawandel haben wir unsere Antworten auf häufig gestellt Fragen (FAQs) für Sie zusammengestellt. Obwohl ein breiter wissenschaftlicher Konsens über die anthropogene Klimaänderung besteht, werden in der öffentlichen Diskussion immer wieder Zweifel gestreut. Über Bücher, Zeitschriften, Fernsehsendungen, das Internet und die sozialen Medien werden Informationen verbreitet, die veraltet, unvollständig, aus dem Zusammenhang gegriffen und/oder falsch sind. Auf der Seite Klimawandel-Skeptiker setzen wir uns zunächste grundsätzlich mit Klimawandel-Skepsis auseinander und nehmen auf der Unterseite Antworten des UBA auf populäre skeptische Argumente skeptische Thesen genauer unter die Lupe. Die meisten Menschen denken an eine allmähliche Erwärmung des Klimas, wenn sie den Begriff „anthropogene Klimaänderung” hören. Es ist jedoch auch möglich, dass besonders starke oder sogar abrupte Klimaänderungen einsetzen. Derartige Prozesse sind mit kritischen Schwellen im Klimasystem , sogenannten Kipp-Punkten, verbunden. Bereits geringe Änderungen im Klimasystem können bewirken, dass Kipp-Punkte erreicht werden, in deren Folge sich das Klima stark ändert. In unserem Hintergrundpapier Kipp-Punkte im Klimasystem erhalten Sie dazu ausführliche Informationen.
Der vom Menschen ausgelöste globale Klimawandel ist eine in der Fachwelt anerkannte Tatsache. Die ersten Folgen des Klimawandels sind in Sachsen-Anhalt bereits spürbar. Die Auswirkungen des Klimawandels wird man in Sachsen-Anhalt in den kommenden Jahrzehnten vermehrt zu spüren bekommen. Der Themenkomplex Klimawandel lässt sich generell in zwei Bereiche aufteilen: Die Klimaanalyse umfasst alle Auswertungen von Klimadaten in der Vergangenheit. Im Themenbereich Klimaprojektion werden mögliche Klimaentwicklungen in der Zukunft auf der Grundlage von Klimamodellrechnungen betrachtet. Bei der Klimaanalyse ist es wichtig, von heute beginnend in der Geschichte zurückzuschauen, um die Klimageschichte des Planeten bewerten zu können. Nur so können aktuelle und künftige Entwicklungen in die Klimageschichte eingeordnet und Extremereignisse bewertet werden. Unterschied zwischen Wetter, Witterung und Klima Wetter: Als Wetter wird der physikalische Zustand der Atmosphäre zu einem bestimmten Zeitpunkt oder in einem auch kürzeren Zeitraum an einem bestimmten Ort oder in einem Gebiet bezeichnet, wie er durch die meteorologischen Elemente und ihr Zusammenwirken gekennzeichnet ist. Witterung: Als Witterung wird der allgemeine, durchschnittliche oder auch vorherrschende Charakter des Wetterablaufs eines bestimmten Zeitraums (von einigen Tagen bis zu ganzen Jahreszeiten) bezeichnet. Klima: Das Klima ist definiert als die Zusammenfassung der Wettererscheinungen, die den mittleren Zustand der Atmosphäre an einem bestimmten Ort oder in einem mehr oder weniger großen Gebiet charakterisieren. Hierbei wird ein Zeitraum von mindestens 30 Jahren zugrunde gelegt. Die Weltorganisation für Meteorologie (World Meteorological Organisation - WMO) empfiehlt den Zeitraum 1961 bis 1990 als Klimareferenzperiode zur langfristigen Betrachtung der Entwicklungen des Klimawandels. Klimawandel: Als Klimawandel werden die langfristigen Veränderungen dieses mittleren Zustandes der Atmosphäre (Klima) bezeichnet. Dabei ist es unerheblich, ob die Veränderungen natürlichen Ursprungs sind oder nicht. Das Klima unterliegt verschiedenen Einflüssen wie bspw. der Sonnenaktivität und den Erdbahnparametern, sowie Vulkanausbrüchen oder der Plattentektonik aber auch dem Einfluss des Menschen. Dabei kann festgehalten werden: Die durch den Menschen hervorgerufene Klimaerwärmung seit Beginn der Industrialisierung ist wissenschaftlicher Konsens. Der Treibhauseffekt Der Treibhauseffekt ist ein auch ohne den Menschen vorkommendes Phänomen: Die Erdoberfläche strahlt langwellige Wärmestrahlung ab. Diese langwellige, nach oben gerichtete Strahlung wird durch Bestandteile der Atmosphäre, die Treibhausgase, absorbiert (aufgenommen) und wieder emittiert (abgegeben). Diese Strahlungsemission geschieht dabei in alle Richtungen, sodass die eigentlich nach oben gerichtete langwellige (also Wärme-)Strahlung zum Teil in der Atmosphäre gehalten wird. Diese erwärmt sich somit. Treibhausgase kommen natürlicher Weise in der Atmosphäre vor. Natürlich in der Atmosphäre vorkommende Treibhausgase sind bspw. Kohlenstoffdioxid (CO 2 ), Methan (CH 4 ), Lachgas (N 2 O) und Wasserdampf (H 2 O). Im Fall des Wasserdampfes verdeutlicht ein einfaches Beispiel den Effekt: In einer sternenklaren Nacht kühlt die Atmosphäre wesentlich schneller aus als bei bedeckten Verhältnissen. Die Erdatmosphäre schützt die Erde somit vor dem Auskühlen: im Gleichgewicht des Strahlungshaushalts ohne Atmosphäre läge die mittlere Erdoberflächentemperatur bei -18 °C. Ausgehend von einer globalen Mitteltemperatur von rund 15 °C wäre es ohne den Treibhauseffekt auf der Erde somit um ca. 33 Kelvin kälter. Die Konzentrationen der Treibhause CO 2 , CH 4 und N 2 O steigen seit Jahrzehnten durch den menschlichen Ausstoß an. In den letzten 60 Jahren hat die CO 2 -Konzentration um 25% zugenommen. Die Konzentration von Methan hat sich mehr als verdoppelt. Dabei gilt zu beachten, dass Methan eine deutlich stärkere Treibhauswirkung hat als CO 2 . Die Atmosphäre ist ein komplexes System. So hängen die verschiedenen physikalischen Größen und Vorgänge wie bspw. Temperatur, Verdunstung sowie Niederschlag/Wasserkreislauf miteinander zusammen. Verändert sich eine Variable (im Falle des Klimawandels die Temperatur), verändern sich auch die anderen Prozesse und Zustände der Atmosphäre. Weiterhin hängen die verschiedenen Komponenten des Klimasystems (Atmosphäre, Hydrosphäre, Kryosphäre, Biosphäre, Lithosphäre/ Pedosphäre) miteinander zusammen. Um nur einige der prominentesten Beispiele zu nennen: Die Temperaturerhöhung der Atmosphäre hat bspw. Auswirkungen auf den Meeresspiegel der Ozeane (Hydrosphäre; z. B. Abschmelzen der Gletscher (Kryosphäre) sowie Dichteabnahme und damit Ausdehnung des Meerwassers) oder den Säuregehalt des Ozeans. Dies wiederum führt zu Beeinflussung des Ökosystems Meer (Biosphäre; bspw. Absterben von Korallenriffen). Weiterhin ist hiervon auch direkt der Lebensraum des Menschen betroffen: Besonders Inselstaaten sind vom Meeresspiegelanstieg bedroht. Zudem bricht mit den absterbenden Korallenriffen ein bedeutsamer Küstenschutz weg. Die globale Lufttemperatur hat seit 1850 um 1,1 K zugenommen. 2023 war global das erste Jahre, dass mehr als 1,5 K wärmer war als vorindustriell (Quelle: https://climate.copernicus.eu/global-climate-highlights-2023 ). Aber auch die Meerestemperaturen steigen an und puffern so einen Teil der Erwärmung der Atmosphäre zunächst ab. Der Anstieg der Temperaturen führt aber sowohl ober, als auch unterhalb der Wasseroberfläche zu Veränderungen von Gletschern, Eisschilden, Strömungen, Flora, Fauna und vielem mehr. Besonders empfindliche Systeme drohen irreversibel geschädigt zu werden, mit Folgen für den ganzen Planeten. Die Rede ist von sogenannten Kipppunkten im Klimasystem der Erde. Die Schnelligkeit der Erwärmung und der damit einhergehenden Veränderungen stellt eine besondere Herausforderung dar. Aus diesen Gründen ist sowohl die Anpassung an bereits stattgefundene oder nicht mehr vermeidbare Klimaveränderungen zwingend nötig, als auch der Schutz des Klimas insgesamt, um noch weiterreichende Veränderungen zu verhindern. Der Klimawandel wirkt sich auch auf regionaler Ebene aus. So steigt bspw. schon heute die Hitzebelastung in mitteldeutschen Sommern. Weiterhin können sich die Niederschlagsverhältnisse innerhalb des Jahres verschieben bzw. durch stabile Wetterlagen kann es immer häufiger zu länger anhaltenden Witterungsverhältnissen kommen, die unter Umständen zu Dürre oder Hochwassergefahr führen. Das Mittel der Temperaturverteilung verschiebt sich in Richtung warm bei zunehmender Bandbreite mit den Hitzeextremen. Globale Klimamodelle sind komplexe physikalische Modelle, die das Klimasystem der Erde anhand physikalisch-numerischer Gleichungen computergestützt und zeitabhängig beschreiben. Kalibrierte Modelle ermöglichen unter definierten Annahmen über die zukünftige Treibhauskonzentrationsentwicklung die Simulation möglicher zukünftiger Klimaentwicklungen (siehe Klimaszenarien). Modelle und ihre Eigenschaften Man nutzt zur Berechnung des zukünftigen Klimas globale Zirkulationsmodelle (General Circulation Model bzw. Global Climate Model - GCMs). Globale Modelle stellen ein unverzichtbares Instrumentarium für voraussichtliche Veränderungen der Häufigkeit und Dauer von charakteristischen Großwetterlagen dar und besitzen eine horizontale Auflösung von ca. 200 km x 200 km Gitterabstand (IPCC). Zeitliche Entwicklung der Modelle Die Entwicklung der globalen Zirkulationsmodelle ist wesentlich an die Entwicklung der Computerkapazitäten gebunden. Erst die Fortschritte in der Rechenleistung großer Computeranlagen haben es ermöglicht, dass sich die Komplexität der Modelle, die Länge der Simulation und die räumliche Auflösung steigern ließen. Die ersten Modellrechnungen wurden mit reinen Atmosphärenmodellen durchgeführt, die aus Wettermodellen abgeleitet wurden. Seit den 1960er Jahren wurden Atmosphären- und Ozeanmodelle miteinander gekoppelt, zunächst mit einer sehr rudimentären Dynamik. In den folgenden Jahren wurden Modelle der Atmosphäre und des Ozeans getrennt weiterentwickelt. Seit den 1990er Jahren wurden immer mehr Komponenten des Klimasystems miteinbezogen und die Modelle wurden immer komplexer. So wurden Anfang der 1990er Jahre Modellrechnungen durchgeführt, die auch die Wirkung der in der Summe abkühlend wirkenden Aerosole berücksichtigten. Außerdem wurden Modelle für den ozeanischen und terrestrischen Kohlenstoffkreislauf entwickelt und in gekoppelten Simulationen für den Bericht des Weltklimarates IPCC von 2007 genutzt. Eine dynamische Vegetation und die Chemie der Atmosphäre sind weitere Bausteine der Modellentwicklung. Das Resultat sind sogenannte Erdsystemmodelle. In jüngster Zeit sind verbesserte biogeochemische Kreisläufe und dynamische Eisschilde, die mit Klimaänderungen in Wechselwirkung stehen, hinzugekommen. Das langfristige Ziel ist es, dass möglichst alle Komponenten des Klimasystems einschließlich ihrer Rückkopplungen und der externen Störungen simuliert werden können. Um Aussagen über das zukünftige Klima treffen zu können, werden Globale Klimamodelle in Verbindung mit Szenarien genutzt. Diese Klimaszenarien beinhalten Annahmen über die zukünftige Entwicklung von Treibhausgasen und ggf. die Gesellschaft. Sie stellen eine sogenannte Randbedingung von Klimamodellrechnungen für die Zukunft (= Klimaprojektionen) dar. Der 5. IPCC-Bericht verwendete Szenarien mit repräsentativen Konzentrationspfaden (RCP), die den möglichen zukünftigen Verlauf der absoluten Treibhausgaskonzentration in der Atmosphäre beschreiben. Im neueren 6. IPCC-Bericht fanden gemeinsame sozioökonomische Entwicklungspfade (Shared Socioeconomic Pathways, SSP) Anwendungen, die stärker den möglichen künftigen Einfluss der gesellschaftlichen und ökonomischen Entwicklung der Menschheit als Ausgangspunkt für den Ausstoß von Treibhausgasen betrachten. Die unterschiedlichen RCP Szenarien sind in der Abbildung dargestellt. Der Zahlenwert hinter dem RCP entspricht dem zusätzlichen Strahlungsantrieb. Der anthropogene Strahlungsantrieb ist hierbei ein Maß für den Einfluss, den ein einzelner Faktor auf die Veränderung des Strahlungshaushalts der Atmosphäre und damit auf den Klimawandel hat. Er wird in Watt pro Quadratmeter angegeben. Ein positiver Strahlungsantrieb, z.B. durch die zunehmende Konzentration langlebiger Treibhausgase, führt zu einer Erwärmung der bodennahen Luftschicht. Ein negativer, z.B. durch die Zunahme von Aerosolen, hingegen bewirkt eine Abkühlung ( weitere Informationen ). Bei RCP2.6 würden also 2,6 W/m² mehr in der Atmosphäre verbleiben. Das Szenario des RCP2.6 ist dabei das Szenario mit konsequentem globalem Klimaschutz, dass das Ziel von 1,5 K Erwärmung bis 2100 einhalten könnte. Mit moderatem Klimaschutz rechnet das Szenario RCP4.5, hier würde man global rund 2 K Erwärmung bis 2100 erreichen. Das RCP6.0 ist das Szenario mit wenig globalem Klimaschutz. Hierbei würde sich die Erwärmung bis 2100 auf etwa 3 K belaufen. Ohne Klimaschutz (RCP8.5) würde die Treibhausgaskonzentration in der Atmosphäre weiter ungebremst zunehmen. Die globale Temperatur würde bis 2100 um mehr als 4 K zunehmen mit entsprechend verheerenden Folgen für unseren Planeten. Die neuere Szenarienfamilie des 6. IPCC Berichts teilt sich recht ähnlich zu der Szenarienfamilie der RCPs auf, auch wenn sich diese im Detail unterscheiden. So wurden zunächst Narrative der sozioökonomischen Entwicklung aufgespannt, welche von „Nachhaltigkeit“ bis „Fossile Entwicklung“ reichen. Für diese verschiedenen Narrative (SSP1 bis SSP5) können verschiedene Strahlungsantriebe eintreten. Nach dem nachhaltigen Szenario mit konsequentem globalem Klimaschutz (SSP1-2.6) kann das 2-Grad-Ziel erreicht werden. Das Szenario SSP2-4.5 mit moderatem Klimaschutz geht von einer Erwärmung von knapp 3 K bis Ende des Jahrhunderts aus. Im Falle des SSP3-7.0 wird von einer Zunahme von Konflikten auf der Erde ausgegangen, die globalen Klimaschutz deutlich erschweren. Demnach würde die globale Temperatur um etwa 4 K ggü. dem vorindustriellen Wert ansteigen. Im SSP5-8.5 gelingt es der Menschheit nicht, Klimaschutz bis zum Ende des Jahrhunderts global umzusetzen. Dies führt zu einer Erwärmung von etwa 5 K. Die Szenarien zeigen, dass konsequenter globaler Klimaschutz bis hinunter auf die Ebene der Bundesländer in Deutschland alternativlos ist, wenn man tiefgreifende Veränderungen vermeiden will. Weiterhin stellen die Szenarien und Klimaprojektionen die Basis für die zu entwickelnden Maßnahmenkonzepte zur Anpassung an den zu erwartenden Klimawandel dar. Letzte Aktualisierung: 18.09.2024
Trends der Lufttemperatur Global setzt 2023 als wärmstes Jahr seit 1850 einen Rekord. Somit traten die neun wärmsten Jahre seit Beobachtungsbeginn 1880 in direkter Folge auf. Mit einer Mitteltemperatur von 10,6 °C war 2023 in Deutschland das bisher wärmste Jahr seit 1881. Die neun wärmsten Jahre seit 1881 liegen alle im 21. Jahrhundert. Steigende Durchschnittstemperaturen weltweit Obwohl es nicht möglich ist, anhand von einzelnen Jahren Aussagen über den durch den Menschen verursachten Klimawandel abzuleiten, passt die Entwicklung der letzten Jahre sehr gut in das Bild und zur Statistik eines langfristigen globalen Temperaturanstiegs. Mit den Mittelwerten der letzten 20 bis 30 Jahre ist der Klimawandel im Vergleich zu den Vergleichsperioden ab 1850 bzw. 1880 auch statistisch sehr gut belegt. 2023 war weltweit das wärmste Jahr seit Beginn der Wetteraufzeichnungen. Damit stellen die letzten neun Jahre die weltweit wärmsten dar (siehe Abb. „Abweichung der globalen Lufttemperatur vom Durchschnitt der Jahre 1850 bis 1900“). Die Jahre 2016 und 2015 waren, neben dem Klimawandel, durch ein außergewöhnlich starkes El-Niño-Ereignis geprägt, das hohe globale Temperaturen begünstigt. Die Jahre 2017 - 2022 waren die bisher wärmsten Jahre seit Beginn der ausreichend umfangreichen Aufzeichnungen im Jahr 1850, die nicht in einem El-Niño-Ereignis lagen. Ab Sommer des Jahres 2023 begann ein neues El-Niño-Ereignis. Dieser El Niño allein kann aber nicht die extremen Rekordtemperaturen im Jahr 2023 erklären. 2023 - das bisher wärmste Jahr in Deutschland Die deutschlandweite Mitteltemperatur im Jahr 2023 lag bei ca. 10,6 °C und damit um 2,4 ° über dem Mittelwert der Referenzperiode 1961-1990. Damit war 2023 das wärmste Jahr seit 1881 und das dreizehnte Jahr in Folge, das wärmer als der vieljährige Mittelwert von 1961-1990 war (siehe Abb. „Jährliche mittlere Tagesmitteltemperatur in Deutschland“ und Tab „Lineare Trends der Lufttemperatur“). Im Vergleich zu den ersten 30 Jahren der systematischen Auswertungen in Deutschland (also 1881 bis 1910) war die Durchschnittstemperatur 2023 in Deutschland circa 2,8 °C höher. Diese Erhöhung zeigt sich regional jedoch durchaus unterschiedlich (siehe Karten „Durchschnittliche Lufttemperatur in Deutschland im Jahr 2023“ und „Veränderung der durchschnittlichen Lufttemperatur in Deutschland im Jahr 2023“). Jährliche mittlere Tagesmitteltemperatur in Deutschland 1881 bis 2023 Quelle: Deutscher Wetterdienst Diagramm als PDF Diagramm als Excel mit Daten Tab: Lineare Trends der Lufttemperatur zwischen 1881 und 2023 Quelle: Deutscher Wetterdienst Diagramm als PDF Diagramm als Excel mit Daten Karte: Durchschnittliche Lufttemperatur in Deutschland im Jahr 2023 (in °C) Quelle: Deutscher Wetterdienst 2024: Deutscher Klimaatlas (Aufruf: April 2024) URL: https://www.dwd.de/DE/klimaumwelt/klimaatlas/klimaatlas_node.html Karte: Veränderung der durchschnittlichen Lufttemperatur in Deutschland im Jahr 2023 (in Kelvin) Quelle: Deutscher Wetterdienst 2024: Deutscher Klimaatlas (Aufruf: April 2024) URL: https://www.dwd.de/DE/klimaumwelt/klimaatlas/klimaatlas_node.html Heiße Tage in Deutschland Im Jahr 2024 wurden durchschnittlich 12,5 Heiße Tage (Tage mit Tmax ≥ 30 °C) beobachtet. Besonders viele Heiße Tage gab es in 2018 (mit durchschnittlich 20,4 Heißen Tagen) sowie im Jahr 2022 (17,3), aber auch schon in 2015 (17,6) sowie 2003 (19,0). Zwar schwanken die Jahreswerte dieses Indikators stark, insgesamt ist der Trend seit Beginn der Aufzeichnungen aber ebenfalls deutlich steigend. Klimamodellierungen zeigen, dass zukünftig in Deutschland mit einer steigenden Anzahl Heißer Tage im Sommer und länger anhaltenden Hitzeperioden zu rechnen ist. Dies führt zu erhöhten gesundheitlichen Risiken für bestimmte Personengruppen. Die Bearbeitung der interaktiven Karte erfolgt durch das Umweltbundesamt, FG I 1.5 und I 1.7. Frühling und Sommer in Deutschland signifikant wärmer Der langfristige lineare Temperaturanstieg im Sommer entspricht für den Zeitraum 1881-2023 mit 1,8 °C in etwa dem jährlichen linearen Trend. Während der Temperaturanstieg für den deutschen Frühling bei 1,6 °C liegt, erreicht der Temperaturanstieg im Herbst 1,7 °C. Die Temperaturen im Winter sind um 1,9 °C gestiegen. Speziell die Sommer seit 1997 waren besonders warm. Der Sommer 2003 ist weiterhin der wärmste Sommer, dann folgen die Sommer 2018, 2019 und 2022. Der Sommer 1996 war der letzte Sommer, der etwas unterhalb des 30-jährigen Mittelwertes von 1961-1990 lag. Beim Herbst haben wir den 13. wärmeren Herbst in Folge und beim Winter den elften wärmeren in Folge beobachtet. Der Sommer 2023 war mit einer Durchschnittstemperatur von 18,5 °C der 5.-wärmste deutsche Sommer seit 1881 (zusammen mit 1947). Am 4. Mai wurden die ersten Sommertage (Tage mit Tmax ≥ 25 °C) beobachtet. Der letzte Sommertag wurde am 20. Oktober registriert. In diesem Zeitraum wurde mit 56 Tagen die 4.-höchste Anzahl an Sommertagen gemessen (2018: 75 Tage, 2003: 62 Tage, 2022: 59 Tage). Bis in die zweite Monatshälfte des Julis prägte häufiger Hochdruckeinfluss den deutschen Sommer 2023 mit deutlich überdurchschnittlichen Temperaturen und intensiven Hitzeperioden, sehr vielen Sonnenstunden und einem Niederschlagsdefizit. Ende Juli fielen die Temperaturen unter die vieljährigen Mittelwerte. Diese kühle und regenreiche Witterungsphase hielt bis zum Ende der ersten Augustdekade an. Besonders dieser Witterungsabschnitt hinterließ den Eindruck, dass der Sommer 2023 kalt und verregnet gewesen wäre. Dann folgte eine weitere Hitzewelle mit vielen heißen Tagen und Tropennächten. Auch im September setzte sich das hochsommerliche Wetter fort. (siehe Abb. „Mittlere Tagesmitteltemperatur im Frühling in Deutschland“ und Abb. „Mittlere Tagesmitteltemperatur im Sommer in Deutschland“). Mittlere Tagesmitteltemperatur im Frühling in Deutschland 1881 bis 2023 Quelle: Deutscher Wetterdienst Diagramm als PDF Diagramm als Excel mit Daten Mittlere Tagesmitteltemperatur im Sommer in Deutschland 1881 bis 2023 Quelle: Deutscher Wetterdienst Diagramm als PDF Diagramm als Excel mit Daten Mildere Herbste und Winter in Deutschland Alle drei Herbstmonate 2023 (September, Oktober und November) waren wärmer als die jeweiligen vieljährigen Mittelwerte. Der September erreichte sogar mit 17,3 °C einen neuen Rekordwert. Auch der Oktober und der November waren deutlich wärmer, so dass der Herbst 2023 mit einem Temperaturmittel von 11,6 °C als 3.-wärmster Herbst seit 1881 endete. (siehe Abb. „Mittlere Tagesmitteltemperatur im Herbst in Deutschland“). Der Winter 2022/23 (meteorologischer Winter: Dezember bis Februar) war sehr mild. Jeder der drei Wintermonate war wärmer als die vieljährigen Monatsmittel für den Referenzzeitraum 1961-1990. Der Monat Dezember war 1,8 °C wärmer. Die Monate Januar und Februar waren deutlich wärmer (3,6 bzw. 3,2 °C). Der Winter 2022/2023 war mit einer positiven Abweichung von ungefähr 2,6 °C vom historischen Temperaturmittel der Wintermonate 1961-1990 der bisher 11.-wärmste Winter seit 1881 (siehe Abb. „Mittlere Tagesmitteltemperatur im Winter in Deutschland“). Wir danken dem Deutschen Wetterdienst für die Bereitstellung der Temperaturdaten. Mittlere Tagesmitteltemperatur im Herbst in Deutschland 1881 bis 2023 Quelle: Deutscher Wetterdienst Diagramm als PDF Diagramm als Excel mit Daten Mittlere Tagesmitteltemperatur im Winter in Deutschland 1881 bis 2022/2023 Quelle: Deutscher Wetterdienst Diagramm als PDF Diagramm als Excel mit Daten Auswirkungen auf die Tier- und Pflanzenwelt Die Jahre werden nicht nur wärmer, in der Folge verschiebt sich auch der jahreszeitliche Entwicklungsgang von Pflanzen und Tieren (Phänologie). So blühen beispielsweise Schneeglöckchen, die den Eintritt des Vorfrühlings anzeigen, und Apfelbäume, die den Vollfrühling anzeigen, früher (fast fünf Tage/Jahrzehnt). Waldbäume treiben in vielen Ländern Europas eher aus (ebenfalls ca. fünf Tage/Jahrzehnt). Dies belegt, dass sich durch ein verändertes Temperaturniveau auch die Eintrittszeit und die Dauer der einzelnen Jahreszeiten verändert hat. Die Auswirkungen der Verschiebungen phänologischer Phasen auf die Bestände von Tieren und Pflanzen sind komplex und bisher erst in Ansätzen geklärt. So reagieren etwa bestimmte Vogelarten mit erhöhtem Bruterfolg infolge kürzerer Winter. Bei Pflanzenarten und ihren Bestäubern oder Fraßfeinden und in Räuber-Beute-Systemen kann sich die Veränderung in der zeitlichen Abstimmung hingegen negativ auf die Bestandsentwicklung von Arten auswirken.
Die Nulllinie entspricht dem globalen Temperaturdurchschnitt der Jahre 1850 bis 1900. Für die Berechnung wurde das Modell Modell HadCRUT.5.0.2.0 mit den EInstellungen "Median der 200 berechneten Zeitreihen" genutzt. Weitere Informationen des Datensatzes sind hier zu finden. Der Datensatz kann in weiteren Formaten hier heruntergeladen werden. Quelle: Met Office Hadley Centre, Climate Reseach Unit Lizenz: Open Government License v3
Indikator: Globale Lufttemperatur Die wichtigsten Fakten 2023 war weltweit das wärmste Jahr seit Beginn der Aufzeichnungen 1850. Die letzten 9 Jahre waren die weltweit wärmsten Jahre seit 1850. Das Übereinkommen von Paris legt fest, dass der globale Temperaturanstieg auf deutlich unter 2 °C, möglichst sogar auf 1,5 °C, gegenüber vorindustrieller Zeit begrenzt werden soll. Aufgrund der historischen Datenverfügbarkeit wird zu diesem Zweck von der WMO die Vergleichsperiode 1850 bis 1900 verwendet. Welche Bedeutung hat der Indikator? Der Klimawandel zeigt sich einerseits im steigenden Mittel der globalen Lufttemperatur. Doch auch die Meere erwärmen sich und versauern zunehmend, Wetterschwankungen verstärken sich und Schäden und Häufigkeit von Extremereignissen wie Starkniederschlägen, Hitze- oder Trockenperioden nehmen zu. Auch in Deutschland werden die Jahre wärmer und heißer, und zwar stärker als im globalen Mittel. In der Folge nimmt die Zahl der „Heißen Tage" zu (siehe Indikator „Heiße Tage“ ). Auch führen die gestiegenen Durchschnittstemperaturen dazu, dass sich die Dauer der einzelnen Jahreszeiten verändert. Die schädlichen Auswirkungen dieser Verschiebungen auf Tiere und Pflanzen sind komplex und bisher erst teilweise bekannt. Das globale Temperaturmittel eines Jahres allein ist klimatologisch wenig aussagekräftig. Mehr Informationen gewinnen wir aus der Abweichung des globalen Mittels eines Jahres vom Mittelwert in einem zurückliegenden, längeren Zeitraum. Daraus wird ersichtlich, ob ein Jahr wärmer oder kühler war als im klimatologischen Mittel. Üblich ist ein Vergleich mit der Periode 1850 bis 1900, die auch von der WMO verwendet wird. Die „Deutsche Anpassungsstrategie an den Klimawandel“ sieht ein Klimafolgen - Monitoring vor (BReg 2008). In einem Monitoringbericht , der alle vier Jahre aktualisiert wird, werden Klimafolgen und Anpassung in unterschiedlichen Handlungsfeldern veröffentlicht. Wie ist die Entwicklung zu bewerten? Um eine gefährliche Störung des Klimasystems zu verhindern, soll der Temperaturanstieg auf deutlich unter 2 °C, möglichst sogar auf 1,5 °C gegenüber dem vorindustriellen Niveau, begrenzt werden. Darauf hat sich die Weltgemeinschaft mit dem Übereinkommen von Paris auf dem Pariser Klimagipfel 2015 geeinigt (UNFCCC 2015) . Um dieses Ziel einzuhalten, muss der weltweite Ausstoß von Treibhausgasen sehr schnell und deutlich sinken (siehe Indikator „Emission von Treibhausgasen“ ), um spätestens im Jahr 2050 globale Treibhausgas -Neutralität zu erreichen. 2023 lag das globale Mittel der bodennahen Lufttemperatur nach Berechnungen der WMO rund 1,5 °C über dem Mittelwert von 1850 bis 1900. Damit war 2023 das wärmste und heißeste jemals gemessene Jahr. Die letzten neun Jahre waren die weltweit wärmsten Jahre seit 1850. Wie wird der Indikator berechnet? Die Temperatur-Daten des Hadley Centres gehören zu den international anerkannten Temperatur-Datensätzen. Wie bei anderen verfügbaren Datensätzen auch, bilden die Messdaten der meteorologischen Stationen die Grundlage zur Berechnung des globalen Mittels der bodennahen Lufttemperatur. Mittels Rechenvorschriften und Interpolation wird mit dem HadCRUT5-Modell das globale Mittel der bodennahen Lufttemperatur aus den weltweiten Messwerten bestimmt (Morice et al. 2021) . Die WMO verwendet neben den hier gezeigten HadCRUT5-Daten auch noch Zeitreihen anderer Institute, u. a. von ECMWF, NASA, NOAA und JMA. Ausführliche Informationen zum Thema finden Sie im Daten-Artikel „Trends der Lufttemperatur“ .
Beobachtete und künftig zu erwartende globale Klimaänderungen Die Veränderungen im globalen Klimasystem haben seit 1950 rapide zugenommen und sind beispiellos im Vergleich zu den vorherigen Jahrtausenden. Zweifellos hat der menschliche Einfluss zur deutlichen Erwärmung der Atmosphäre, Ozeane und Landflächen geführt. Anhaltende Treibhausgas-Emissionen werden auch künftig starke Klimaänderungen und weitere Extremereignissen verursachen. Aktueller Stand der Klimaforschung Auf Basis deutlich verbesserter Kenntnis der Klimaprozesse, besserer (paläoklimatischer) Nachweise zu den Klimabedingungen vergangener Erdepochen und der Reaktion des Klimasystems auf den zunehmenden Strahlungsantrieb der Sonne ist der vom Menschen verursachte Klimawandel eindeutig nachweisbar und wirkt sich bereits auf sehr viele Wetter - und Klimaextreme in allen Regionen der Welt aus. Dieser Einfluss des Menschen auf das Erdklima (anthropogener Klimawandel) und die damit einhergehenden weitverbreiteten Veränderungen zeigen sich in der schnellen Erwärmung der unteren Atmosphäre und der Ozeane, in den Veränderungen des globalen Wasserkreislaufs, in der weltweiten Abnahme von Schnee und Eis, im Anstieg des mittleren globalen Meeresspiegels und an veränderten Jahreszeiten. Zudem gibt es jetzt noch mehr beobachtete Veränderungen von Wetterextremen wie Hitzewellen, Starkniederschlägen, Überflutungen, Dürren und tropischen Wirbelstürmen sowie insbesondere noch mehr eindeutigere Belege für deren Zuordnung zum Einfluss des Menschen. Die Treibhausgas-Konzentrationen in der Atmosphäre sind auch in den letzten 10 Jahren weiter angestiegen und haben 2023 jährliche Mittelwerte von 419 ppm für Kohlendioxid (CO 2 ), 1.940 ppb für Methan (CH 4 ) und 336,8 ppb für Lachgas (N 2 O) erreicht. Die mittlere globale dekadische Oberflächentemperatur stieg im Zeitraum von 1880 bis 2023 um mehr als 1,3 °C (vgl. Abb. „Der Einfluss des Menschen hat das Klima in einem Maße erwärmt, wie es seit mindestens 2.000 Jahren nicht mehr der Fall war"). Auf der Nordhalbkugel war die letzte Dekade die wärmste seit mehr als 125.000 Jahren. Zu erwartende globale Klimaänderungen Bis Ende des 21. Jahrhunderts wird sich die Erwärmung der bodennahen Luftschicht fortsetzen. Alle zugrunde gelegten Treibhausgasemissionsszenarien ergeben bis Ende des 21. Jahrhunderts eine Temperaturzunahme. Je nach Szenario kann die mittlere Erwärmung von 1,5 bis 5,7 °C im Vergleich zu vorindustriellen Bedingungen (Referenzperiode: 1850-1900) reichen. Nur unter der Voraussetzung sehr ambitionierter Klimaschutzmaßnahmen und drastischer Reduktionen der CO 2 - und anderer Treibhausgas -Emissionen ließe sich der mittlere Temperaturanstieg bis 2100 gegenüber der vorindustriellen Zeit auf 1,5 °C bis 2,4 °C begrenzen. Nähere Informationen zum Sechsten Sachstandsbericht des Weltklimarats ( IPCC -AR6) finden Sie auf der Seite der Deutschen IPCC Koordinierungsstelle. Die Teilberichte des AR6 Der Bericht der Arbeitsgruppe I des Weltklimarates IPCC kommt zu dem klaren Schluss, dass die vom Menschen verursachten (anthropogenen) Treibhausgasemissionen eindeutig die Ursache für die bisherige und die weitere Erwärmung des Klimasystems der Erde sind. Die zahlreichen Folgen der Klimaerwärmung - einschließlich der Extremereignisse – werden immer offensichtlicher und lassen sich direkt dem anthropogenen Treibhauseffekt zuordnen. Die Auswirkungen der globalen Klimaveränderungen sind somit intensiver und häufiger geworden und werden dies auch in den kommenden Jahrzehnten weiterhin tun. Der Anstieg der globalen mittleren Oberflächentemperatur wird im Vergleich zum vorindustriellen Niveau wahrscheinlich Anfang der 2030er Jahre den Wert von 1,5°C erreichen. Mehr zum Thema; der Klimawandel verläuft schneller und folgenschwerer finden Sie hier . Im Fokus des zweiten Teilberichtes stehen die Folgen des Klimawandels sowie die Anpassung an den Klimawandel . Der IPCC warnt: Die Klimarisiken für Ökosysteme und Menschen nehmen weltweit rapide zu. Nur konsequenter Klimaschutz und frühzeitige Klimaanpassung können Risiken verringern. Der Teilbericht beschreibt sehr deutlich die Auswirkungen der Klimakrise. Bereits jetzt sind massive Folgen für Ökosysteme und Menschen in allen Regionen der Welt sichtbar und die weltweiten CO₂ Emissionen steigen weiter. Die Auswirkungen der Klimakrise werden Menschen und Ökosysteme selbst dann noch spürbar belasten, wenn es uns gelingt, entschieden umzusteuern und die Erderhitzung auf 1,5 °C zu begrenzen. Mehr zur Anpassung an den Klimawandel finden sie hier . Die wohl wichtigste Botschaft des dritten Teilberichtes ist, dass es technologisch und ökonomisch nach wie vor möglich wäre, die globale Erwärmung entsprechend des Übereinkommens von Paris auf 1,5°C bis 2100 zu begrenzen. Dafür sind allerdings eine sofortige globale Trendwende sowie tiefgreifende Treibhausgas -Minderungen in allen Weltregionen und allen Sektoren nötig (d.h. in Energiesystemen, Städten, Land- und Forstwirtschaft, Landnutzung , Gebäuden, Verkehr und Industrie). Sofortige Klimaschutzmaßnahmen würden das globale Wirtschaftswachstum nur geringfügig verringern – verglichen mit einer rein hypothetischen Entwicklung, die den Klimawandel gar nicht enthält. Verglichen mit den zu erwartenden Wirtschaftskrisen und Rezessionen bei einer Erwärmung von mehr als 1,8 °C stellen sofortige Klimaschutzmaßnahmen dagegen auch ökonomisch eine äußerst lohnende Investition dar. Erstmalig stand auch das energie- und emissionssparende Verhalten in Unternehmen und im Alltag im Zentrum des Teilberichtes. Weltweit verbesserte Rahmenbedingungen wie politische und regulatorische Instrumente, internationale Zusammenarbeit, Marktinstrumente (z.B. CO₂-Bepreisung), Investitionen, Innovationen, Technologietransfer, Aufbau von Know-How sowie klimafreundliche Lebensstile bieten Möglichkeiten, die notwendigen System-Transformationen im Einklang mit nachhaltiger Entwicklung und globaler Gerechtigkeit zu gestalten. Armutsbekämpfung und eine gesicherte Energieversorgung könnten ohne signifikante Emissionssteigerungen erreicht werden. Die allerwichtigsten Optionen liegen dabei in der Nutzung von Sonnenenergie und Windkraft sowie im Mobilitäts-, Gebäude- und Ernährungs-Sektor (hier vor allem weniger Fleischkonsum), aber auch besonders im Schutz und der Verbesserung der Wirksamkeit von Ökosystemen (vor allem der globalen Wälder und Moore). Hier haben wir für Sie die Kernaussagen des dritten Teilberichts zusammengefasst.
Klimarahmenkonvention und das Übereinkommen von Paris Im Jahr 1992 beschloss die internationale Staatengemeinschaft die Klimarahmenkonvention als globales Klimaschutzabkommen. Die Klimarahmenkonvention ist die völkerrechtliche Basis für weltweiten Klimaschutz und hat 198 Vertragsparteien inklusive der EU. Im Übereinkommen von Paris verpflichteten sich die Vertragsstaaten Anstrengungen zu unternehmen, um den Temperaturanstieg unter 1,5 °C zu halten. Klimarahmenkonvention der Vereinten Nationen Die Klimarahmenkonvention der Vereinten Nationen (United Nations Framework Convention on Climate Change, UNFCCC) wurde 1992 in Rio de Janeiro von 154 Staaten unterzeichnet und trat 1994 in Kraft. Ihr Ziel ist die Stabilisierung der Treibhausgaskonzentrationen auf einem Niveau, das eine gefährliche Störung des Klimasystems verhindert. Die Vereinbarung verpflichtet die Staaten zur Zusammenarbeit basierend auf ihrer "gemeinsamen, aber unterschiedlichen Verantwortung und Kapazitäten". Aktuell haben 197 Vertragsparteien sowie die EU als regionale Wirtschaftsorganisation die Klimarahmenkonvention ratifiziert. Die Klimarahmenkonvention unterliegt einem ständigen Entwicklungsprozess, wie auf den jährlichen Vertragsstaatenkonferenzen (COP) zu sehen ist. Wesentliche Meilensteine waren das Kyoto-Protokoll von 1997, das rechtsverbindliche Minderungsverpflichtungen für Industrieländer vorsah, und das Übereinkommen von Paris von 2015, mit dem sich die beigetretenen Staaten verpflichten, die Temperaturerhöhung auf deutlich unter 2 °C gegenüber dem vorindustriellen Niveau zu begrenzen, mit Anstrengungen für eine Beschränkung auf 1,5 °C. Die Umsetzung der Klimarahmenkonvention erfordert Berichterstattung über Treibhausgas -Emissionen und Minderungsmaßnahmen. Entwicklungsländer hatten im Kyoto-Protokoll zunächst keine Minderungsverpflichtungen, doch die Veränderung der Emissionssituation führte zu Anpassungen bei der COP 20 in Lima (2014). Deutschland erstellt jährliche Inventarberichte zu Treibhausgas-Emissionen und legt alle vier Jahre einen umfassenden Nationalbericht vor. Seit 2014 gibt es auch einen zweijährigen Bericht, der die wichtigsten Inhalte anderer Berichte zusammenfasst und einen Überblick über die Entwicklung der Treibhausgas-Emissionen in Deutschland bietet. Das Übereinkommen von Paris Im Dezember 2015 verabschiedeten die Vertragsstaaten das Übereinkommen von Paris (ÜvP) mit ehrgeizigen neuen Zielen für die Bekämpfung des Klimawandels. Sie einigten sich darin auf das völkerrechtlich verbindliche Ziel, den Anstieg der globalen Mitteltemperatur auf deutlich unter 2 °C gegenüber dem vorindustriellen Temperaturniveau zu halten und dass Anstrengungen unternommen werden den Temperaturanstieg auf 1,5 °C über dem vorindustriellen Niveau zu begrenzen (siehe weiter unten „Die Pariser Klimakonferenz“). Im Übereinkommen wird als operationales Ziel entsprechend festgehalten, dass in der zweiten Hälfte des Jahrhunderts eine Balance zwischen anthropogenen (vom Mensch verursachten) Emissionen und deren Abbau durch ein Senken selbiger erreicht werden muss. Der 2018 veröffentlichte Sonderbericht des Weltklimarates zu 1,5 °C globaler Erwärmung stellte u. a. dazu den aktuellen wissenschaftlichen Sachstand zusammen. Die auf der Pariser Klimakonferenz (COP 21) im Dezember 2015 vereinbarten Ziele verpflichten die Staatengemeinschaft, die Erderwärmung auf deutlich unter 2 °C gegenüber dem vorindustriellen Niveau zu begrenzen. Darüber hinaus sollen die Vertragsstaaten deutliche Anstrengungen unternehmen, um den Temperaturanstieg unter 1,5 °C zu halten. In der zweiten Hälfte des Jahrhunderts soll die Welt treibhausgasneutral werden. Die Staaten sollen seit 2020 alle fünf Jahre neue ambitionierte nationale Klimaschutzbeiträge (nationally determined contributions, NDCs) vorlegen, die der Erfüllung des globalen Langfristziels dienen und zunehmend ehrgeiziger werden sollen. Der gemeinsame Fortschritt wird dabei regelmäßig überprüft. Bereits im Jahr 2018 wurde eine vorläufige Bilanz gezogen und im Jahr 2023 wurde der formale Mechanismus der Globalen Bestandsaufnahme das erste Mal abgeschlossen. Der zweijährige Prozess der globalen Bestandsaufnahme mündete in einer umfangreichen Entscheidung, die die mangelnden kollektiven Fortschritte beim Klimaschutz herausstellt, die Dringlichkeit für verstärkten Klimaschutz betont und eine Reihe von Bereichen benennt bei denen Fortschritte notwendig sind. Die Ergebnisse sollen nun in den NDCs, die 2025 vorgelegt werden sollen, mit einfließen. Die zweite globale Bestandsaufnahme soll 2028 abgeschlossen werden. Das ÜvP bezieht alle Unterzeichnerstaaten gleichermaßen ein. Je nach Stand ihrer wirtschaftlichen Entwicklung werden jedoch für die Länder unterschiedliche Pflichten festgelegt. Insbesondere bekennen sich die Industrieländer zu ihrer Verpflichtung die Entwicklungsländer beim Klimaschutz und der Anpassung an den Klimawandel zu unterstützen. Die Staatengemeinschaft soll darüber hinaus den ärmsten und verwundbarsten Ländern helfen, Schäden und Verluste durch den Klimawandel zu bewältigen. Das Übereinkommen trat nach der Ratifizierung durch 55 Staaten, die für mindestens 55 % der globalen Treibhausgas -Emissionen verantwortlich sind, am 04.11.2016 formell in Kraft. In einem ersten Schritt arbeitete die Staatengemeinschaft an einem detaillierten Regelwerk, welches die Grundlage für die Umsetzung des ÜvP bildet. Nachdem große Teile des Regelwerks bei der Klimakonferenz (COP24) in Kattowitz im Jahr 2018 beschlossen werden konnte, wurde eine Einigung zu den letzten noch ausstehenden Themen auf der COP26 in Glasgow im Jahr 2021 gefunden. Seitdem steht die Umsetzung des ÜvP im Zentrum der internationalen Klimaverhandlungen. Ausführliche Informationen zur Klimarahmenkonvention und zum Übereinkommen finden Sie unter „Themen“ im Artikel „Klimarahmenkonvention der Vereinten Nationen (UNFCCC)“ und im Artikel „ Übereinkommen von Paris “.
Die aktuellste Untersuchung der World Weather Attribution (WWA) zu den Starkregenfällen in Westeuropa im Juli 2021 wirft ein besorgniserregendes Licht auf die Verbindung zwischen extremen Wetterereignissen und dem vom Menschen verursachten Klimawandel. Die Ergebnisse deuten darauf hin, dass der bisherige Temperaturanstieg, der auf menschliche Aktivitäten zurückzuführen ist, die Wahrscheinlichkeit für extreme Starkregenereignisse signifikant erhöht hat. Die Studie hebt hervor, dass diese Wahrscheinlichkeit im Bereich von 1,2 bis 9 Mal gestiegen ist. Darüber hinaus verzeichnet die Untersuchung einen beeindruckenden Anstieg der Intensität dieser extremen Niederschläge um 3 bis 19 Prozent. Die Wissenschaftler, die an dieser bahnbrechenden Studie teilgenommen haben, warnen eindringlich davor, die breite Spanne ihrer Ergebnisse als Grundlage zu verwenden, um die Auswirkungen des Klimawandels zu unterschätzen. Maarten van Aalst, Leiter des Klimazentrums des Internationalen Roten Kreuzes in Den Haag und Mitwirkender an der Attributionsstudie, betont die Dringlichkeit der Lage. Er unterstreicht, dass die Studienergebnisse verdeutlichen, dass es immer entscheidender wird, auch solche extremen und seltenen Ereignisse zu berücksichtigen, da sie durch den Klimawandel künftig wahrscheinlicher werden. Die Ursachen für starke Starkregenereignisse und Hochwasser sind äußerst facettenreich und spiegeln die komplexe Wechselwirkung verschiedener Faktoren wider, die von natürlichen bis hin zu anthropogenen Einflüssen reichen. Klimawandel : Der Klimawandel steht an vorderster Front dieser Herausforderungen. Der Anstieg der globalen Durchschnittstemperaturen hat direkte Auswirkungen auf das Wettergeschehen. Er führt zu intensiveren Niederschlägen, verändert Wettermuster und verstärkt Extremereignisse wie Starkregen. Landnutzungsänderungen : Veränderungen in der Landnutzung, sei es durch Urbanisierung, Entwaldung oder Landwirtschaft, beeinflussen den natürlichen Wasserkreislauf. Versiegelte Flächen, wie sie in städtischen Gebieten üblich sind, können zu schnellerem Wasserabfluss und höheren Hochwasserrisiken führen. Topografie : Die geografische Beschaffenheit eines Gebiets spielt eine entscheidende Rolle. Bergige Regionen können dazu neigen, Niederschläge zu verstärken und den Abfluss zu beschleunigen, während flache Gebiete anfälliger für Überflutungen sein können. Spezifische Wetterlagen: Langanhaltende Regenperioden, Gewitter oder stagnierende Fronten können zu anhaltenden Niederschlägen führen, die wiederum Hochwasserereignisse begünstigen. Menschliche Aktivitäten: Unangepasste städtische Planung, unzureichende Wasserwirtschaft, der Bau von Staudämmen und Entwässerungssystemen können lokale Hochwasserrisiken verstärken. Schneeschmelze: In schneebedeckten Regionen kann eine schnelle Schneeschmelze, besonders in Kombination mit starken Regenfällen, zu einem raschen Anstieg des Wasserstandes in Flüssen führen. Infrastrukturprobleme: Verstopfte Abflüsse, defekte Kanalisationssysteme oder unzureichende Hochwasserschutzmaßnahmen können die Auswirkungen von Hochwasser verschärfen. Eine gründliche Analyse dieser vielschichtigen Faktoren ist von entscheidender Bedeutung, um effektive Strategien zur Hochwasservorbeugung und -bewältigung zu entwickeln. Diese müssen nicht nur auf lokaler und regionaler Ebene, sondern auch auf globaler Ebene koordiniert werden, um den Herausforderungen einer sich wandelnden Umwelt gerecht zu werden und die Resilienz gegenüber extremen Wetterereignissen zu stärken.
IPCC-Synthesebericht macht Aktionsdruck für 1,5°C noch deutlicher Extremwetterereignisse werden mit verschärftem Klimawandel viel häufiger auftreten, so der Weltklimarat (IPCC) in seinem neuesten Bericht. Die globalen Treibhausgasemissionen müssen bis 2030 halbiert werden, um die Erwärmung auf 1,5 °C zu begrenzen. An Lösungen dafür mangelt es nicht, doch die derzeitigen Maßnahmen reichen nicht aus. Nötig sind drastische Maßnahmen und zwar sofort. Es ist wissenschaftlich eindeutig nachgewiesen, dass steigende Treibhausgasemissionen durch menschliche Aktivitäten die globale Erwärmung verursacht haben. Die globale Oberflächentemperatur lag im letzten Jahrzehnt rund 1,1 °C über dem vorindustriellen Niveau, mit weiter steigender Tendenz. Besonders in den vergangenen zwei Jahrzehnten hat die Geschwindigkeit vieler Änderungen im Klimasystem nochmals zugenommen. Daraus resultieren weltweit gefährliche und zunehmend irreversible Verluste und Schäden in der Natur und sämtlichen Volkswirtschaften. Der Klimawandel gefährdet dadurch das Leben von Milliarden von Menschen auf der ganzen Welt. Die zunehmenden klimabedingten Risiken werden zusätzlich verstärkt durch andere menschliche Einflüsse, wie Umweltverschmutzung, Fragmentierung, Verlust und Degradierung von Lebensräumen. Insgesamt drohen das Aussterben von zehntausenden von Spezies und damit immense Verluste an Biodiversität . Um die globale Erwärmung auf 1,5°C zu begrenzen und eine lebenswerte Zukunft für alle Menschen auf dieser Welt zu ermöglichen, sind sofortige und drastische Minderungen der Treibhausgasemissionen notwendig. Global müssen die Treibhausgasemissionen ihren Scheitelpunkt schon im nächsten Jahr erreichen und bereits bis 2030 im Vergleich zum heutigen Niveau fast halbiert werden, also in nur sieben Jahren. Die CO 2 -Emissionen müssen bis 2050 sogar auf Netto-Null sinken. Schon heute gibt es in jedem Sektor wirtschaftliche Maßnahmen und Optionen, um dies zu erreichen. Die Technologien dafür sind alle verfügbar, insbesondere bei Solar- und Windenergie sowie der Batterietechnik. Viele weitere Informationen zu Minderungsoptionen, deren Potenzialen und Kosten finden sich im vorliegenden IPCC -Synthesebericht - sehr gut zusammengefasst in der sogenannten „Summary for Policymakers“ und dort in der Abbildung „Figure SPM.7“ (siehe unten). Weitere wichtige Erkenntnisse aus dem Bericht: Insbesondere Personen mit hohem sozioökonomischen Status tragen überproportional zum Klimawandel bei und haben das größte Potenzial, ihre Emissionen zu mindern: Die 10 % der Haushalte mit den global höchsten Pro-Kopf-Emissionen verursachen 34-45 % der weltweiten Treibhausgasemissionen, während die unteren 50 % nur 13-15 % zu den Gesamtemissionen beitragen. Allein schon nachfrageorientierte Maßnahmen (insbesondere in den Bereichen Gebäude, Verkehr und Ernährung) können die gesamten THG-Emissionen bis 2050 um 40-70 % senken. Dazu zählen auch die systemische Reduzierung von Lebensmittelverschwendung, verbessertes Recycling und energieeffizientere Gebäude. Es gilt nun, alle verfügbaren Klimaschutzmaßnahmen möglichst schnell umzusetzen, denn bereits jede weitere geringfügige Erhöhung der globalen Mitteltemperatur erhöht auch die Eintrittswahrscheinlichkeit einer Vielzahl von Risiken für Mensch und Umwelt. Aus diesem Grund ist es auch so, dass 1,5 °C Erwärmung deutlich erträglicher wären als 1,6 °C, und diese wiederum als 1,7 °C, und so weiter. Es zählt daher jede Tonne an Treibausgasemissionen. Es gibt zwar unerprobte Technologien, um CO 2 nachträglich wieder aus der Atmosphäre zu entfernen, jedoch sind diese, im Vergleich zu anderen Maßnahmen, mit viel höheren Kosten sowie außerdem einer Reihe von Risiken verbunden. Zudem sind sie kein Ersatz für sofortige, tiefgreifende und nachhaltige Emissionsminderungen. Denn falls wir die Grenze einer Erwärmung um 1,5 °C überschreiten, drohen neben den bereits erwähnten irreversiblen Schäden auch Rückkopplungs-Mechanismen („Feedback-Effects“), die vom Klimawandel ausgelöst werden, diesen aber auch wiederum weiter verstärken. Dazu zählen etwa großflächige Waldbrände, das Absterben des Amazonas-Regenwaldes oder das Auftauen von Permafrostböden, was mit einer immensen Freisetzung von Methan verbunden wäre. Ambitionierte Bemühungen zur Verminderung der Emissionen von Treibhausgasen sind absolut notwendig – und doch nur eine Seite der Medaille. Die andere heißt: Anpassung. Je weniger ambitioniert der Klimaschutz ausfällt, umso stärker werden Klimarisiken zunehmen, insbesondere Extremereignisse wie Hitzewellen, Dürren und Starkniederschläge, sowohl global als auch regional. Die Hitzewellen und Überschwemmungen der letzten Jahre sind auch vielen Menschen in Deutschland noch sehr deutlich vor Augen. Insgesamt erhöht sich die Notwendigkeit zur Anpassung an den nicht mehr vermeidbaren Klimawandel. Gleichzeitig verringert sich aber die Effektivität von Anpassungsmaßnahmen bei höheren Erwärmungsniveaus. Klimarisiken und Anpassungsmaßnahmen müssen dabei im Kontext mit weiteren gesellschaftlichen Entwicklungen gesehen werden, z. B. veränderte Landnutzung , wirtschaftliche Entwicklung, Lebensstile und Konsumverhalten. Viele Maßnahmen, zum Beispiel Hitzeaktionspläne oder die wassersensible Stadtentwicklung, sind bereits in der Umsetzung. Besonders wichtig ist die ökosystembasierte Anpassung, zum Beispiel Moorschutz oder Renaturierung von Flüssen. Solche Maßnahmen verbinden idealerweise Klimaanpassung und Klimaschutz: Sie wirken als Kohlenstoffsenken und machen Ökosysteme resilient gegenüber dem Klimawandel. Sofortiges Handeln ist entscheidend, denn der IPCC-Bericht zeigt klar: In einigen Regionen und Sektoren können auch Grenzen der Anpassung für Ökosysteme und Gesellschaften erreicht werden, insbesondere bei starkem Klimawandel. Fazit: Die Entscheidungen und Maßnahmen, die wir jetzt treffen, werden sich über Tausende von Jahren auswirken. Die bisherigen Bemühungen, die Treibhausgasemissionen zu mindern, reichen bei weitem nicht aus und würden in den nächsten 70 Jahren auf eine 3,2 °C wärmere Welt hinauslaufen, mit katastrophalen Folgen für Mensch und Umwelt. Es liegt also an allen, aber besonders an den wohlhabenden Teilen der Welt, jetzt einen konsequent an Klimaschutz ausgerichteten Entwicklungspfad einzuschlagen, mit all seinen Herausforderungen aber auch Chancen für eine gerechtere Welt. Wenn die globalen Treibhausgasemissionen nicht sofort, schnell und in großem Umfang reduziert werden, wird es nicht mehr möglich sein, die globale Erwärmung auf 1,5 °C oder sogar auf 2 °C zu begrenzen und damit eine lebenswerte und nachhaltige Zukunft für alle zu sichern. Das Umweltbundesamt hat an der Erstellung und Verabschiedung aller Berichte des IPCC im 6. Berichtszyklus mitgewirkt. Zuletzt unterstützten UBA -Mitarbeitende als Teil der Deutschen Delegation die Verabschiedung des Syntheseberichts auf der 58. IPCC-Plenarsitzung in Interlaken. Mit der kommenden 59. IPCC-Sitzung im Juli 2023 in Nairobi wird der 6. Berichtszyklus abgeschlossen und der neue siebte Berichtszyklus gestartet.
Origin | Count |
---|---|
Bund | 71 |
Land | 11 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Ereignis | 13 |
Förderprogramm | 29 |
Gesetzestext | 1 |
Strukturierter Datensatz | 1 |
Text | 35 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 38 |
offen | 44 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 78 |
Englisch | 12 |
Resource type | Count |
---|---|
Bild | 2 |
Datei | 15 |
Dokument | 23 |
Keine | 24 |
Unbekannt | 1 |
Webseite | 51 |
Topic | Count |
---|---|
Boden | 73 |
Lebewesen & Lebensräume | 83 |
Luft | 76 |
Mensch & Umwelt | 80 |
Wasser | 74 |
Weitere | 83 |