Die Brewer-Dobson Zirkulation (BDC) spielt eine Schlüsselrolle für das globale Klima, da sie die Konzentrationen von Ozon, Wasserdampf und Aerosol in der oberen Troposphäre und unteren Stratosphäre (UTLS) beeinflusst. Diese Spurengase wiederum wirken sich über Strahlungsprozesse auf das Klima aus. Insbesondere bewirken Änderungen in der BDC Änderungen im Ozonfluss aus der Stratosphäre in die Troposphäre und haben darüber einen Einfluss auf Klima und Gesundheit. Das Verständnis der Variabilität der BDC auf saisonalen bis dekadischen Zeitskalen ist Voraussetzung für eine verläßliche Detektion von anthropogen bedingten Langzeit-Änderungen (Trends). Allerdings ist die Variabilität der BDC in den Klimamodellen nur unzureichend repräsentiert, und nicht in Übereinstimmung mit Spurengas-Messungen.Der Projektantrag zielt auf eine Abschätzung der Einflüsse von natürlicher Variabilität und Trends der BDC auf die Spurengaskonzentrationen in der UTLS ab. Insbesondere sollen diejenigen dynamischen Mechanismen untersucht werden, die die Unterschiede zwischen Modellen und Beobachtungen bewirken. Das Projekt verbindet etablierte diagnostische Methoden, neuartige Modell-Simulationen mit einem Lagrangeschen Transportmodell (CLaMS) und mit einem gekoppelten Chemie-Klimamodell (EMAC) mit Beobachtungsdaten, um die BDC Änderungen und dadurch bedingte Klimaeinflüsse zu untersuchen. Der Arbeitsplan gliedert sich in drei Arbeitpakete: (1) Untersuchung von natürlicher Variabilität und anthropogen bedingter Trends der BDC, (2) Untersuchung der involvierten dynamischen Mechanismen, (3) Abschätzung der Einflüsse von BDC Änderungen auf den Ozonfluß aus der Stratosphäre in die Troposphäre.Dazu werden erstens Zeitreihen von Luftalter und Ozon aus Beobachtungen auf Variabilitäten und Trends der BDC untersucht und mit Simulationen des CLaMS und des EMAC Modells verglichen, zur Validierung der Modelle. Mithilfe von Regressions-Methodiken werden dann Variabilitäten und Trends in der BDC und in den UTLS Spurengasverteilungen verschiedenen Variabilitäts-Moden im Klimasystem zugeschrieben. Zweitens, werden die involvierten dynamischen Prozesse anhand von drei Arten von Sensitivitäts-Experimenten mit dem EMAC Modell untersucht. Insbesondere können mit diesen vorgeschlagenen Sensitivitäts-Experimenten die dynamischen Mechanismen der BDC Änderungen durch ENSO und Vulkanaerosol aufgedeckt werden, sowie die Gründe für diesbezügliche Differenzen zwischen Modell und Beobachtung. Schließlich sollen der Effekt von BDC Änderungen auf den Ozonfluß in die Troposphäre und die dadurch bedingten Klimaeffekte angeschätzt werden. Dabei wird der Ozonfluß im Modell anhand eines Budget-Ansatzes für die untere Stratosphäre bestimmt. Regressions-Analyse ermöglicht eine Zuschreibung der Variabilität im Ozonfluß zu den verschiedenen Variabilitäts-Moden im Klimasystem, und somit eine Abschätzung der entsprechenden Effekte auf Klima und Luftqualität.
Die Nukleation von Eispartikeln spielt eine wichtige Rolle bei der Wolken- und Niederschlagsbildung, mit Konsequenten für die atmosphärische Chemie, die Wolkenphysik und das Erdklima. Für eine Quantifizierung und Vorhersage des Einflusses von Wolken in Wettervorhersage- und Klimamodellen muss die Bildung von Eispartikeln daher in einer realistischen Art und Weise beschrieben werden. Einer der wichtigen Bildungsmechanismen ist dabei die heterogene Eisnukleation im Immersionsmodus, bei dem Eis an der Oberfläche eines in einem wässrigen Tröpfchen suspendierten Eiskeims - zum Beispiel eines Mineralstaub- Partikels - gebildet wird. Wir werden im Rahmen dieses Forschungsprojekts zahlreiche Gefrierexperimente im Immersionsmodus durchführen. So werden eine Reihe verschiedener, als Aerosolpartikel in der Atmosphäre vorkommende Materialien auf ihre Eisnukleationseigenschaften hin untersucht werden. Insbesondere sollen hier die Temperatur- und Zeitabhängigkeit der von diesen Materialien ausgelösten Eisnukleation quantifiziert werden. Dabei werden wir spezielles Augenmerk auf die systematische Untersuchung der von porösen Materialien ausgelösten Eisnukleation legen. Es sollen sowohl synthetische Materialien wie beispielsweise mesoporöse Silikate untersucht werden, als auch natürlich vorkommende Materialien wie etwa mikroporöse Zeolithe.
Planfeststellungsbeschluss: Nach §§ 17 ff. des Bundesfernstraßengesetzes (FStrG) in Verbindung mit §§ 73 ff. des Hessischen Verwaltungsverfahrensgesetzes (HVwVfG) ist auf Antrag der Bundesrepublik Deutschland, vertreten durch die Autobahn GmbH des Bundes – Außenstelle Dillenburg -, vom 28. Oktober 2021 der Plan für das oben genannte Vorhaben mit den sich aus den Violetteintragungen in den Planunterlagen ergebenden Änderungen und Ergänzungen, vom Hessischen Ministerium für Wirtschaft, Energie, Verkehr, Wohnen und ländlichen Raum durch Planfeststellungsbeschluss vom 17. März 2025 – Az.: VI 6-061-k-04#2.211 - festgestellt worden. Es wurde eine Umweltverträglichkeitsprüfung nach § 4 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG) durchgeführt. 1. Planänderung: Die Autobahn GmbH des Bundes hat beim Hessischen Ministerium für Wirtschaft, Energie, Verkehr, Wohnen und ländlichen Raum als Planfeststellungsbehörde die Durchführung des Anhörungsverfahrens nach § 17a FStrG in Verbindung mit § 73 HVwVfG für die 1. Änderung des Plans für den Ersatzneubau der Talbrücke Blasbach im Zuge der A 45 beantragt. Für das Vorhaben besteht eine Verpflichtung zur Durchführung einer Umweltverträglichkeitsprüfung gem. § 5 UVPG. Am 28. Oktober 2021 wurde von der Vorhabenträgerin erstmalig die Durchführung des Planfeststellungsverfahrens beantragt. Im Dezember 2023 hat das Regierungspräsidium Gießen seine abschließende Stellungnahme zum Anhörungsverfahren an die Planfeststellungsbehörde, dem damaligen Hessischen Ministerium für Wirtschaft, Energie, Verkehr und Wohnen, zur Entscheidung weitergeleitet. Im Zuge der Sachverhaltsaufklärung durch die Planfeststellungsbehörde hat die Vorhabenträgerin eine Unterlage ergänzt bzw. neu erarbeitet, die als 1. Planänderung in das Verfahren eingeführt wird. Die Planänderung umfasst eine Abhandlung zum globalen Klima.
<p>Bedingt durch seine hohe atmosphärische Konzentration ist Kohlendioxid nach Wasserdampf das wichtigste Klimagas. Die globale Konzentration von Kohlendioxid ist seit Beginn der Industrialisierung um gut 50 % gestiegen. Demgegenüber war die Kohlendioxid-Konzentration in den vorangegangenen 10.000 Jahren annähernd konstant. Konzentrationen weiterer Treibhausgase tragen ebenfalls zum Klimawandel bei.</p><p>Kohlendioxid </p><p>Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle und Erdöl) und durch großflächige Entwaldung wird Kohlendioxid (CO2) in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> angereichert. Diese Anreicherung wurde durch die Wissenschaft unzweifelhaft nachgewiesen.</p><p>Die weltweite Kohlendioxid-Konzentration lag im Jahr 2024 bei 422,79 (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppm#alphabar">ppm</a>) Kohlendioxid (<a href="https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt">NOAA 2024</a>). Hinzu kommen Konzentrationen weiterer Treibhausgase, die ebenfalls zum weltweiten <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beitragen.</p><p>Die <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/uba-misst-neue-rekordwerte-fuer-kohlendioxid">Auswertung von Messungen</a> der atmosphärischen Kohlendioxid-Konzentration für das Jahr 2015 an den Messstationen des Umweltbundesamtes Schauinsland (Südschwarzwald) und auf der Zugspitze hat gezeigt, dass in diesem Jahr die Konzentration an beiden Stationen im Jahresdurchschnitt erstmals über 400 µmol/mol (ppm) lag. Zum Vergleich: Die Kohlendioxid-Konzentration aus vorindustrieller Zeit lag bei etwa 280 µmol/mol (ppm).</p><p>Auf Deutschlands höchstem Gipfel sind die Messwerte besonders repräsentativ für die Hintergrundbelastung der Atmosphäre, da die Zuspitze häufig in der unteren freien <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Troposphre#alphabar">Troposphäre</a> liegt und somit weitestgehend unbeeinflusst von lokalen Quellen ist. Im Jahr 2024 stieg der Jahresmittelwert auf der Zugspitze auf 424,2 µmol/mol (ppm) (siehe Abb. „Kohlendioxid-Konzentration in der Atmosphäre (Monatsmittel)“).</p><p>Lange Messreihen ergeben ein zuverlässiges Maß für den globalen Anstieg der Kohlendioxid-Konzentration. Dank ihrer Genauigkeit ermöglichen sie es, den Effekt der Verbrennung fossiler Brennstoffe von natürlichen Konzentrations-Schwankungen zu unterscheiden. Auf dieser Grundlage kann die langfristige Veränderung des Kohlendioxid-Vorrats in der Atmosphäre mit Klimamodellen genauer analysiert werden.</p><p>Die Auswertung der Messreihe vom aktiven Vulkan Mauna Loa auf Hawaii werden zur Bestimmung des globalen Kohlendioxid-Anstiegs genutzt, da sich die Messstation in größer Höhe und weit entfernt von störenden Kohlendioxidquellen befindet. Während in den 1960er-Jahren der jährliche Anstieg auf Mauna Loa (aktiver Vulkan auf Hawaii, wo) im Mittel noch bei 0,86 µmol/mol (ppm) Kohlendioxid lag, stieg der Welttrend in den vergangenen 15 Jahren im Mittel auf 2,47 µmol/mol (ppm) pro Jahr, in Mauna Loa auf 2,5 µmol/mol (ppm) pro Jahr. Gegenüber den 1950er-Jahren wurde damit der globale Kohlendioxid-Anstieg annähernd verdreifacht.</p><p>Methan</p><p>Bis 2024 stieg die weltweite Methan-Konzentration bis etwas über 1929,7 nmol/mol (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppb#alphabar">ppb</a>).</p><p>An der Messstation Zugspitze wurde für 2024 ein Jahresmittelwert von 2003 nmol/mol (ppb) gemessen (siehe Abb. „Methan-Konzentration in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> (Monats- und Jahresmittelwerte)“).</p><p>Lachgas</p><p>Weltweit lag die Lachgas-Konzentration im Jahr 2024 bei über 337,7 nmol/mol (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppb#alphabar">ppb</a>).</p><p>An der Messstation Zugspitze wurde für 2024 ein Jahresmittelwert von 338,5 nmol/mol (ppb) gemessen (siehe Abb. „Lachgas-Konzentration in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> (Monatsmittelwerte)“).</p><p>Beitrag langlebiger Treibhausgase zum Treibhauseffekt</p><p>In der Summe bilden Kohlendioxid (CO2), Methan, Lachgas und die halogenierten Treibhausgase den sogenannten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhauseffekt#alphabar">Treibhauseffekt</a>: Die langlebigen Treibhausgase leisteten 2023 einen Beitrag zur globalen Erwärmung <a href="http://www.esrl.noaa.gov/gmd/aggi/aggi.html">(NOAA 2024)</a> von insgesamt 3,485 W/m² (Watt pro Quadratmeter). Verglichen mit dem Stand von 1990 ergibt dies eine Zunahme von fast 52 %. Dabei leistet atmosphärisches CO2 den vom Menschen in erheblichem Umfang mit verursachten Hauptbeitrag zur Erwärmung des Erdklimas. In Folge dieser Klimaerwärmung nimmt auch der sehr mobile und wechselnd wirkende Wasserdampf in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> zu. Im Vergleich zu CO2 ist dieser zwar deutlich maßgebender für die Erwärmung, atmosphärisches CO2 bleibt aber der vom Menschen verursachte Hauptantrieb.</p><p>Wie stark die verschiedenen langlebigen Klimagase im Einzelnen zur Erwärmung beitragen, ist in der Abbildung „Beitrag zum Treibhauseffekt durch Kohlendioxid und langlebige Treibhausgase 2023“ zu sehen. Der größte Anteil dabei entfällt auf Kohlendioxid mit etwa 66 %, gefolgt von Methan mit 16 %, Lachgas mit 6%, und den halogenierten Treibhausgasen insgesamt mit 12 %.</p><p>Obergrenze für die Treibhausgas-Konzentration</p><p>Um die angestrebte Zwei-Grad-Obergrenze der atmosphärischen Temperaturerhöhung mit einer Wahrscheinlichkeit von mindestens 66 % zu unterschreiten, müsste die gesamte <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Konzentration (Kohlendioxid, Methan, Lachgas und F-Gase) in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> bis zum Jahrhundertende bei rund 450 <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppm#alphabar">ppm</a> Kohlendioxid-Äquivalenten stabilisiert werden. Dabei ist eine kurzfristige Überschreitung dieses Konzentrationsniveaus möglich (<a href="https://www.de-ipcc.de/270.php">IPCC-Synthesebericht</a>).</p><p>2023 lag die gesamte Treibhausgas-Konzentration bei 534 ppm Kohlendioxid-Äquivalenten (siehe Abb. „Treibhausgas-Konzentration in der Atmosphäre“). Um die angestrebte Stabilisierung zu erreichen, müssen die globalen Treibhausgas-Emissionen gesenkt werden. In den meisten Szenarien des Welt-Klimarates (IPCC) entspricht dies einer Menge von weltweiten Treibhausgas-Emissionen zwischen 30 und 50 Milliarden Tonnen (Mrd. t) Kohlendioxid-Äquivalenten im Jahr 2030. Im weiteren Verlauf bis 2050 müssten die Emissionen weltweit zwischen 40 % und 70 % unter das Niveau von 2010 gesenkt werden und bis Ende des Jahrhunderts auf nahezu null sinken. Dazu sind verbindliche Zielsetzungen im Rahmen einer globalen Klimaschutzvereinbarung erforderlich.</p><p>Im Dezember 2015 vereinbarte die Staatengemeinschaft auf der 21. Vertragsstaatenkonferenz unter der <a href="https://www.umweltbundesamt.de/daten/klima/klimarahmenkonvention">Klimarahmenkonvention</a> (COP21) das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>-Übereinkommen von Paris. Darin ist zum ersten Mal in einem völkerrechtlichen Abkommen verankert, dass die durchschnittliche globale Erwärmung auf deutlich unter zwei Grad begrenzt werden soll. Darüber hinaus sollen sich die Vertragsstaaten bemühen, den globalen Temperaturanstieg möglichst unter 1,5 Grad zu halten. Um dieses Ziel zu erreichen, müssen die Treibhausgas-Emissionen sobald wie möglich abgesenkt werden. In der zweiten Hälfte des Jahrhunderts soll eine globale Balance der Quellen und das Senken von Treibhausgas-Emissionen (Netto-Null-Emissionen) erreicht werden. Das bedeutet die Dekarbonisierung der Weltwirtschaft und damit einen Ausstieg aus der Nutzung fossiler Energieträger. Enorme Anstrengungen sind notwendig, um dieses Ziel zu erreichen, und zwar nicht nur in Deutschland, sondern in allen Staaten, insbesondere den Industrienationen. Zur Erreichung der Klimaziele hat Deutschland das <a href="https://www.bundesregierung.de/resource/blob/974430/1679914/e01d6bd855f09bf05cf7498e06d0a3ff/2019-10-09-klima-massnahmen-data.pdf?download=1">Klimaschutzprogramm 2030</a> verabschiedet.</p><p>Weiterführende Informationen</p><p>Auf den folgenden Seiten finden Sie weiterführende Informationen zu internationalen Klimabeobachtungssystemen:</p><p><em>Wir danken der Nationalen Administration für die Ozeane und die Atmosphäre (NOAA Global <a href="https://www.umweltbundesamt.de/service/glossar/m?tag=Monitoring#alphabar">Monitoring</a> Division) in Boulder, USA und dem Scripps Institut für Ozeanography, La Jolla, USA für die CO2-Daten des GAW Globalobservatoriums von Mauna Loa, Hawaii, sowie dem Mace Head GAW Globalobservatorium, Irland und dem AGAGE Projekt für die Lachgasdaten.</em></p>
Der Klimawandel hat in der Arktis weitreichende direkte und indirekte Auswirkungen auf die Gesundheit der indigene und nicht-indigene Bevölkerung. Die Klima- und Wetterbedingungen der nördlichen Breiten und die jüngsten dramatischen Klimaveränderungen führen zu Temperaturextremen, die sich auf die soziale und wirtschaftliche Struktur der städtischen und ländlichen Gebiete auswirken werden. Eine eingehende Analyse dieser Veränderungen sollte sich sowohl mit den spezifischen natürlichen und sozialen Merkmalen befassen als auch mit den Anliegen der indigenen Bevölkerung. Das menschliche Wohlbefinden im Kontext von Klima- und Wetterextremen lässt sich mit dem Universal Thermal Climate Index (UTCI) erfassen. Während die Lufttemperatur allein ein guter Indikator für die aktuellen und zukünftigen Wetter- und Klimabedingungen ist, kann das Wohlbefinden durch starke Winde und hohe Luftfeuchtigkeit beeinflusst werden. Gerade in Küstengebieten verschärfen sich die klimatischen Situationen im Winter durch das Zusammenspiel von Wind und Kälte. Das Projekt zielt darauf ab, die aktuellen bioklimatischen Bedingungen zu identifizieren und mittels dem UTCI zu bewerten. Der Schwerpunkt liegt auf der thermischen Belastung für den menschlichen Körper und der Bewertung der sozialen Anfälligkeit, die sich aus den rezenten extremen klimatischen Schwankungen in der Arktis ergeben. Es werden auch die positiven Folgen der globalen Klimaerwärmung und der gesellschaftliche Nutzen aus diesen Veränderungen der nördlichen Breitengrade diskutiert. Zur Bestimmung der sozialen Verwundbarkeit und der sozialen Sensibilität und Anpassungsfähigkeit in den nördlichen Breiten berechnen wir den Social Vulnerability Index (SVI). Die SVI konkretisiert die sozialen Probleme, die sich aus dem fortschreitenden Klimawandel ergeben und liefert Erkenntnisse für die Entwicklung von Anpassungsstrategien in dieser Region. Um sich in die regionalen Details des SVI zu vertiefen, wird das sozioökonomische Umfeld der Gemeinden im Norden Norwegens als Fallstudie betrachtet. Die Ergebnisse des Projekts können als nützliches Instrument zur Minimierung von Bevölkerungsverlusten und zur Gewährleistung der sozialen Sicherheit in der Arktis dienen und politischen Entscheidungsträgern eine solide wissenschaftliche Grundlage für die Prävention und Eindämmung von Klimakatastrophen bieten, was für die Menschen in den nördlichen Gebieten äußerst wichtig ist in Zeiten des Klimawandels.
Der Anstieg natürlicher Emissionen des Treibhausgases Methan haben einen bedeutenden Einfluss auf das Klima der Erde. Als Methanquelle nehmen küstennahe Gewässer eine besondere Stellung ein, da die Methankonzentration im Wasser hier wesentlich höher ist als im offenen Ozean. Trotz der Bedeutung der Küstengebiete ist bisher nur wenig bekannt über die hier zu findenden Methanemittenten und ihr jeweiliger Beitrag am atmosphärischen Methanfluss. Zudem zeigen eine Reihe aktueller Untersuchungen, dass Methan nicht nur unter anoxischen Bedingungen mikrobiell gebildet werden kann, sondern dass dies auch in einer oxischen Umgebung möglich ist. Eine solche Methanproduktion nahe der Meeresoberfläche würde den Weg zwischen Methanquelle und Atmosphäre wesentlich verkürzen und damit den Methanfluss in die Atmosphäre verstärken. Aufgrund einiger Untersuchungen, die eine Verknüpfung zwischen Primär- und Methanproduktion aufzeigen, stellen wir die Hypothese auf, dass Mikrophytobenthos (MPB)-Gemeinschaften eine wichtige, aber bisher nicht bearbeitete Stellung in der Flachwasser-Methandynamik zukommen. MPB-Gemeinschaften nehmen eine herausragende Rolle in der Primärproduktion von Küstensedimenten ein. Um die Bedeutung der MPB-assoziierten Methanproduktion besser einordnen zu können, werden wir das Potential dieser Methanquelle in Inkubationsexperimenten detailliert untersuchen. Zur Bestimmung der hierbei wichtigen Effektoren und Mikrophytobenthosarten werden wir an verschiedenen axenischen und xenischen klonalen Kulturen benthischer Diatomeen-Spezies die Primär- und Methanproduktion unter kontrollierten Temperatur- und Lichtbedingungen bestimmen. Mit Hilfe einer neuen Cavity-Ring-Down-Spektroskopie basierten Methode planen wir an geschlossenen Inkubationen die Methankonzentrationsentwicklung in hoher zeitlicher Auflösung über Tag/Nacht Zyklen zu erfassen. Zusätzliche Inkubationen mit 13C-markierten Substraten werden es uns erlauben, den Weg der Methanproduktion in den Diatomeen einzugrenzen. Bisher wurde der Prozess der oxischen Methanproduktion nur in Kulturexperimenten untersucht. Ob die hier ermittelten Raten auch in die natürliche Umgebung übertragbar sind, wurde hingegen nicht geprüft. Um diese Wissenslücke zu schließen, planen wir neben den Experimenten an klonalen Kulturen auch Studien an natürlichen MPB-Gemeinschaften durchzuführen. Diese Gemeinschaften werden wir im Flachwasser vor der Insel Askö (schwedische Ostseeküste) und dem inneren Küstengewässer vor Zingst (Darßer-Zingst-Bodden, deutsche Ostseeküste) beproben, um ein möglichst breites Spektrum an Sedimenten, hydrodynamischen Bedingungen und MPB-Gemeinschaften abzudecken. Um die in unseren Experimenten ermittelten Methanproduktionsraten in die benthischen und atmosphärischen Methanflüsse besser einordnen zu können, werden wir in beiden Untersuchungsgebieten die Methanflüsse zwischen Sediment, dem Wasser und der Atmosphäre bestimmen.
Aerosolpartikel spielen eine wichtige Rolle für das regionale und globale Klima. Weltweit gibt es deshalb zahlreiche Messstationen, von denen allerdings nur ein kleiner Teil die marine Grenzschicht (MBL) erfasst, obwohl etwa 70% der Erdoberfläche mit Wasser bedeckt sind. Dieses Projekt soll dazu beitragen, das Wissen über Quellen und Austauschprozesse von Aerosolpartikeln in der MBL mithilfe einer Messkampagne über den Azoren im Nordostatlantik, welche nahezu unbeeinflusst von lokalen Quellen sind, zu verbessern.Die zentrale Hypothese ist, dass sowohl Ferntransport aus Nordamerika, als auch Partikelneubildung in der freien Troposphäre (FT) und an Wolkenrändern mit anschließendem Vertikaltransport wesentlich zur Anzahlkonzentration der Aerosolpartikel in der MBL beitragen. Das Verständnis der Partikelquellen und Senken zusammen mit dem vertikalen Partikelaustausch zwischen MBL und FT ist daher eine Grundvoraussetzung für die Vorhersagbarkeit der Partikelanzahlkonzentration in den unteren Schichten der MBL wo sie z.B. für die Wolkenbildung von großer Bedeutung ist. Diese Prozesse sind bisher über dem offenen Ozean nur unzureichend quantifiziert. Zur Verifizierung der Hypothese sollen vertikale Austauschprozesse und Partikelquellen über den Azoren mit hoher räumlicher Auflösung untersucht werden. Dazu werden mit einer am TROPOS entwickelten hubschraubergetragenen Messplattform Partikelanzahlkonzentration und Vertikalwind mit einer zeitlichen Auflösung gemessen, die erstmalig eine direkte Bestimmung des vertikalen turbulenten Partikelflusses in verschiedenen Höhen ermöglicht. Die hierfür notwendigen schnellen Partikelmessungen von mind. 10 Hz werden durch den Einsatz eines schnellen Partikelzählers ermöglicht, welcher am TROPOS im Rahmen eines abgeschlossenen DFG-Projektes entwickelt und erfolgreich eingesetzt wurde. Durch dieses Gerät ist es ebenfalls möglich zu prüfen, ob auch in dieser Region regelmäßig die Neubildung von Aerosolpartikeln an Wolkenrändern stattfindet, wie es an Passatwolken auf Skalen von wenigen Dekametern beobachtet wurde. Weiterhin werden Anzahlgrößenverteilungen von Aerosolpartikeln sowie Absorptionskoeffizienten bei drei Wellenlängen bestimmt. Damit sind Rückschlüsse auf die Herkunft der untersuchten Aerosolpartikel möglich.Da die Hubschrauberflüge zeitlich begrenzt sind und damit nur Momentaufnahmen darstellen, werden zusätzlich kontinuierliche Messungen der Partikelanzahlgrößenverteilung an zwei bodengebundenen Stationen installiert. Eine dieser Stationen ist wenige Meter über Meeresniveau gelegen, die andere auf 2200 m und somit in der FT. Damit wird auf der Basis kontinuierlicher Messungen über einen Zeitraum von einem Monat die Untersuchung der Austauschprozesse zwischen MBL und FT ermöglicht. Mit Hilfe der gewonnen Datensätze können Einflüsse globaler Klimaänderungen auf das lokale Klima und mögliche Rückkopplungseffekte über den Einfluss von Aerosol auf Wolken in dieser Region besser eingeordnet werden.
Das Weltklima ist durch den Treibhauseffekt bedroht. Staedte und Gemeinden sind mit ihren Buergern aufgerufen, dem entgegenzutreten. Gerade hier gibt es erhebliche Potentiale, CO2 und andere Treibhausgase zu mindern. Die Landeshauptstadt Stuttgart hat hierzu ein Konzept erarbeiten lassen, das die Bilanzierung und Trendprognose der CO2-Emissionen sowie zwei Massnahmenszenarien zur wirksamen CO2-Minderung in Stuttgart enthaelt. Die Konzepterstellung wurde von einem Arbeitskreis (Energie-Tisch) unterstuetzt, an dem verschiedenste Institutionen und Verbaende mitgewirkt haben. So konnte deren Fachkompetenz und Kenntnis bereits sehr frueh in das 1997 fertiggestellte Konzept einfliessen. Der Stuttgarter Gemeinderat hat zwischenzeitlich einem von der Verwaltung vorgelegten Handlungsprogramm zur Umsetzung des Klimaschutzkonzeptes zugestimmt. Neben einer Grundsatzentscheidung zur CO2-Reduzierung wurde die Mitwirkung und Mitfinanzierung an einem Energieberatungszentrum sowie ein Projekt zum energiesparenden Autofahren beschlossen, das aus staedtischen Mitteln mit 200000,- DM bezuschusst wird. Kuenftig sollen generell insbesondere Massnahmen umgesetzt werden, die neben dem Klimaschutz auch der Staerkung der lokalen Wirtschaft dienen. Bereits beschlossen ist auch ein kommunales Energiesparprogramm. Im Vorfeld dieses Programms war bereits zunaechst als einjaehriges Pilotprojekt eine Mobilitaetszentrale mit kompetenter Beratung in allen Verkehrsfragen eingerichtet worden. Die erfolgreiche Pilotphase endet im Sommer 1999. Die Weiterfuehrung soll in Kuerze beschlossen werden. Die Umsetzung von Massnahmen des Klimaschutzkonzeptes gestaltet sich wegen der angespannten Finanzlage schwierig.
Die anthropogenen Kohlendioxidemissionen (CO2) sind für den größten Teil der jüngsten globalen Oberflächenerwärmung der Erde um etwa 1°C gegenüber dem vorindustriellen Niveau verantwortlich. Das Land und die Ozeane nehmen derzeit etwa die Hälfte unserer Emissionen durch komplexe Prozesse des Kohlenstoffkreislaufs auf. Der Klimaantrieb durch anthropogene CO2-Emissionen hört erst auf, wenn ein Gleichgewicht zwischen CO2-Quellen und -Senken erreicht ist. Da es nicht realisierbar ist, alle CO2-Emissionen bis Mitte des 21. Jahrhunderts zu eliminieren, bestehen alle plausiblen zukünftigen Emissionsszenarien, die auf eine mit dem Pariser Abkommen übereinstimmende Temperaturstabilisierung anstreben, aus einem Portfolio menschlicher Aktivitäten, die Emissionssenkungen mit Maßnahmen zur so genannten Kohlendioxidentnahme (CDR) kombinieren, die die verbleibenden positiven Emissionen kompensieren sollen.Allerdings werden CDR-Maßnahmen wie die meisten anderen menschlichen Aktivitäten durch Emissionen von andere Treibhausgase als CO2 (z.B. Methan oder Distickstoffoxid), Aerosolen oder durch Landnutzungsänderungen zusätzliche Klimaveränderungen verursachen. Gegenwärtig machen diese weiteren Treibhausgase mehr als 40% der globalen Oberflächenerwärmung aus, während Aerosole einen Teil der Erwärmung ausgleichen. Darüber hinaus beeinflussen diese zusätzlichen Klimaeinflüsse den Kohlenstoffkreislauf, der wiederum Einfluss auf die atmosphärische CO2-Konzentration und damit auf die Oberflächentemperatur nimmt (Abb. 1). Diese Wechselwirkung beeinflusst die Menge der CO2-Entnahme, die durch CDR-Maßnahmen erforderlich ist, um eine Temperaturstabilisierung zu erreichen.Es ist daher wichtig, die vollständige Reaktion des Klimas auf spezifische menschliche Aktivitäten, einschließlich CDR-Maßnahmen, zu erfassen, um gut informiert Maßnahmen zur Temperaturstabilisierung ein zu leiten. Insbesondere die Untersuchung der Reaktion des Erdsystems auf realistische Portfolios künftiger anthropogener Aktivitäten erfordert die Einbeziehung aller damit verbundenen Klimafaktoren - CO2, andere Treibhausgase als CO2, Aerosole und Landnutzungsänderungen - um bestmögliche Einschätzungen der möglichen Wege zur Temperaturstabilisierung zu erhalten.
Die jahreszeitliche Variabilität der globalen Meereisbedeckung ist eine wichtige Komponente des globalen Klimas. Jedoch ist der kleinskalige Einfluss des Meereises in globalen Klimamodellen bis heute nur unzureichend beschrieben. Dieser Antrag hat daher das Ziel, die physikalischen (P) und bio-geo-chemischen (BGC) Schlüsselprozesse im Meereis mit einem hochaufgelösten Zweiskalenmodell mathematisch zu beschreiben. Die Ergebnisse können dann parametrisiert in globale Klimamodelle (GCMs) einfließen, sodass eine verbesserte Prognosefähigkeit erreicht wird.Die Ozeanerwärmung wird die Mikrostruktur des Meereises erheblich verändern. Wir entwickeln daher ein P-BGC-Modell einer antarktischen Meereisscholle, um die komplexen gekoppelten Zusammenhänge zwischen Eisbildung, Nährstofftransport, Salinität und Solekanalverteilung, Photosynthese und Karbonatchemie mathematisch zu beschreiben. Damit simulieren wir verschiedene Szenarien der Meereisbildung und ihrer Auswirkungen auf das Wachstum von Meereisalgen, die einen großen Einfluss auf den vertikalen Kohlenstoff-Export (biologische Kohlenstoffpumpe) besitzen.Damit leistet dieses Projekt einen wesentlichen Beitrag zum Forschungsschwerpunkt ‘3.2.D - Verbessertes Verständnis der polaren Prozesse und Mechanismen’ bei. Im Einzelnen gehen wir auf drei übergeordnete Ziele ein:Schritt 1: Beschreibung der Meereisstruktur Wir verwenden ein gekoppeltes Zweiskalenmodell, mit dem relevante Aspekte des Gefrierens und Schmelzens im Zusammenhang mit Deformation, Salinität und Soletransport beschrieben werden. Auf der Makroebene dient dafür eine kontinuumsmechanische Beschreibung im Rahmen der erweiterten Theorie poröser Medien (eTPM). Damit können über einen gekoppelten Gleichungssatz partieller Differentialgleichungen (PDE) Deformations-, Transport und Reaktionsprozesse beschrieben werden. Für das physikalische Phänomen der Phasentransformation zwischen Wasser und Eis dient das Phasenfeldmodell (PF) als Mikromodell, welches ebenfalls aus gekoppelten PDEs besteht. Daraus resultiert eine PDE-PDE Kopplung.Schritt 2: Kopplung mit dem erweiterten RecoM2 Modul als Mikromodell Damit können die BGC Phänomene beschrieben werden. Das RecoM2 Modul besteht aus einem Gleichungssystem gewöhnlicher Differentialgleichungen, sodass hier eine PDE-ODE Kopplung zu einem P-BGC Modell erfolgt. Schritt 3: Bewertung der Modellansätze Dies beinhaltet die Verifizierung und Validierung des kombinierten P-BGC-Modells mittels Literatur- sowie experimenteller Daten. Für die Verwendung des hochaufgelösten zweiskaligen P-BGC Modells in globalen Klimamodellen muss die Berechnungseffizienz gesteigert werden. Zu diesem Zweck werden Reduzierte-Basis-Modell (ROM) zur Erzeugung von Surrogaten des Vollen-Basis-Modells (FOM) eingesetzt, die die Modellkomplexität verringern, z.B. durch datengetriebene Machine-Learning (ML)-Techniken oder “Generalized Proper Decomposition” (GPD).
| Origin | Count |
|---|---|
| Bund | 144 |
| Land | 19 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 5 |
| Ereignis | 8 |
| Förderprogramm | 116 |
| Text | 30 |
| Umweltprüfung | 3 |
| unbekannt | 2 |
| License | Count |
|---|---|
| geschlossen | 28 |
| offen | 136 |
| Language | Count |
|---|---|
| Deutsch | 164 |
| Englisch | 40 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 17 |
| Dokument | 13 |
| Keine | 65 |
| Unbekannt | 1 |
| Webseite | 93 |
| Topic | Count |
|---|---|
| Boden | 145 |
| Lebewesen und Lebensräume | 157 |
| Luft | 164 |
| Mensch und Umwelt | 163 |
| Wasser | 138 |
| Weitere | 151 |