API src

Found 71 results.

Related terms

Toxicological basis data for the derivation of EULCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2- dimethoxyethane and 1,2-diethoxyethane

The subject of this project was the preparation of substance reports for five substances relevant for building products emissions. For these substances, the toxicological data basis were researched, compiled and evaluated, and EU-LCI values were proposed. The EU-LCI values allow the harmonisation of the health assessment of building products emissions throughout Europe. The EU-LCI Working Group is currently developing a harmonised European list of substances and their associated emission limits. The substance reports developed within this project support and accelerate this process. The project outcome is relevant for all stakeholder involved in the topic of building products emissions. Veröffentlicht in Texte | 223/2020.

Chem-Org\PEG+DPM (hochrein)

Herstellung von hochreinem Polyethylen Glykol (PEG), (DPM (Dipropylen glykol monomethyl ether) subsumiert), PEG-Herstellung durch Polyaddition von Ethylenoxid in meist geringe Mengen Wasser enthaltenden Systemen mit Ethylenoxid als Startmolekül (nach #1); Ausbeute 95% (#2, S. 162), Nutzungsgrad 95%. Eigene Schätzung des Öko-Instituts zum Energiebedarf: nur für Pumpen (10kWh/t output). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 95% Produkt: Grundstoffe-Chemie

Markt für Ethylenoxid

technologyComment of ethylene oxide production (RER): Ethylene is directly oxidized with air or oxygen in the presence of a catalyst to ethylene oxide (EO). About 40% of all European EO production is converted into glycols, globally the figure is about 70%. Usually, EO and MEG are produced together at integrated plants. Industrial production started in 1937 with a union Carbide process based on ethylene and air. In 1958 oxygen rather than air was instroduced by Shell Development Company, and today most processes are based on oxygen. Total European production was 3.4 million tons per year in 1997, while the US produced 5.2 million tons per year. Further production capacity of at least 1.2 million tons is reported from Saudi Arabia, Kuwait, Japan and South Korea giving a total of at least 9.8 million tons of ethylene oxide production worldwide. Ethylene oxide is a hydrocarbon compound made from ethylene and oxygen. Major manufacturers include Hoechst Celanese, Shell Chemical, and Union Carbide, among many others. EO is produced by passing a mixture of ethylene and oxygen over a solid silver-containing catalyst. Selectivity is improved by the addition of chlorine compounds such as chloroethane. Reaction conditions are temperatures of about 200 - 300 °C and a pressure of 10 – 30 bar. The main by-products are carbon dioxide and water, formed when ethylene is fully oxidised or some of the EO is further oxidised. Ethylene glycols are formed when the reactor gases are absorbed into chilled water. C2H4 + 1/2 O2  C2H4O (1) C2H4 O + H2O  HO-C2H4-OH (2) C2H4 + 3 O2  2 CO2 + 2 H2O (3) (1) production of ethylene oxide (2) production of MEG from EO and water (3) production of carbon dioxide and water from oxidation of ethylene The carbon dioxide is removed from the scrubber by absorption with hot aqueous potassium carbonate, the resulting solution is steam stripped to remove the carbon dioxide, which is vented to air. The potassium carbonate is regenerated. The carbon dioxide can be reused for inerting, or is sold, or is vented to atmosphere. References: IPPC Chemicals, 2002. European Commission, Directorate General, Joint Research Center, “Reference Document on Best Available Techniques in the Large Volume Organic Chemical Industry”, February 2002. Wells, 1999. G. Margaret Wells, “Handbook of Petrochemicals and Processes”, 2nd edition, Ashgate, 1999

Markt für Ameisensäure

Production mix technologyComment of decarboxylative cyclization of adipic acid (RER): decarboxylative cyclization of adipic acid technologyComment of formic acid production, methyl formate route (RER): The worldwide installed capacity for producing formic acid was about 330 000 t/a in 1988. Synthesis of formic acid by hydrolysis of methyl formate is based on a two-stage process: in the first stage, methanol is carbonylated with carbon monoxide; in the second stage, methyl formate is hydrolyzed to formic acid and methanol. The methanol is returned to the first stage. Although the carbonylation of methanol is relatively problem-free and has been carried out industrially for a long time, only recently has the hydrolysis of methyl formate been developed into an economically feasible process. The main problems are associated with work-up of the hydrolysis mixture. Because of the unfavorable position of the equilibrium, reesterification of methanol and formic acid to methyl formate occurs rapidly during the separation of unreacted methyl formate. Problems also arise in the selection of sufficiently corrosion-resistant materials Carbonylation of Methanol In the two processes mentioned, the first stage involves carbonylation of methanol in the liquid phase with carbon monoxide, in the presence of a basic catalyst: imageUrlTagReplacea0ec6e15-92c8-4d44-82bb-84e90e58b171 As a rule, the catalyst is sodium methoxide. Potassium methoxide has also been proposed as a catalyst; it is more soluble in methyl formate and gives a higher reaction rate. Although fairly high pressures were initially preferred, carbonylation is carried out in new plants at lower pressure. Under these conditions, reaction temperature and catalyst concentration must be increased to achieve acceptable conversion. According to published data, ca. 4.5 MPa, 80 °C, and 2.5 wt % sodium methoxide are employed. About 95 % carbon monoxide, but only about 30 % methanol, is converted under these circumstances. Nearly quantitative conversion of methanol to methyl formate can, nevertheless, be achieved by recycling the unreacted methanol. The carbonylation of methanol is an equilibrium reaction. The reaction rate can be raised by increasing the temperature, the carbon monoxide partial pressure, the catalyst concentration, and the interface between gas and liquid. To synthesize methyl formate, gas mixtures with a low proportion of carbon monoxide must first be concentrated. In a side reaction, sodium methoxide reacts with methyl formate to form sodium formate and dimethyl ether, and becomes inactivated. The substances used must be anhydrous; otherwise, sodium formate is precipitated to an increasing extent. Sodium formate is considerably less soluble in methyl formate than in methanol. The risk of encrustation and blockage due to precipitation of sodium formate can be reduced by adding poly(ethylene glycol). The carbon monoxide used must contain only a small amount of carbon dioxide; otherwise, the catalytically inactive carbonate is precipitated. Basic catalysts may reverse the reaction, and methyl formate decomposes into methanol and carbon monoxide. Therefore, undecomposed sodium methoxide in the methyl formate must be neutralized. Hydrolysis of Methyl Formate In the second stage, the methyl formate obtained is hydrolyzed: imageUrlTagReplace2ddc19c0-905f-42c3-b14c-e68332befec9 The equilibrium constant for methyl formate hydrolysis depends on the water: ester ratio. With a molar ratio of 1, the constant is 0.14, but with a water: methyl formate molar ratio of 15, it is 0.24. Because of the unfavorable position of this equilibrium, a large excess of either water or methyl formate must be used to obtain an economically worthwhile methyl formate conversion. If methyl formate and water are used in a molar ratio of 1 : 1, the conversion is only 30 %, but if the molar ratio of water to methyl formate is increased to 5 – 6, the conversion of methyl formate rises to 60 %. However, a dilute aqueous solution of formic acid is obtained this way, and excess water must be removed from the formic acid with the expenditure of as little energy as possible. Another way to overcome the unfavorable position of the equilibrium is to hydrolyze methyl formate in the presence of a tertiary amine, e.g., 1-(n-pentyl)imidazole. The base forms a salt-like compound with formic acid; therefore, the concentration of free formic acid decreases and the hydrolysis equilibrium is shifted in the direction of products. In a subsequent step formic acid can be distilled from the base without decomposition. A two-stage hydrolysis has been suggested, in which a water-soluble formamide is used in the second stage; this forms a salt-like compound with formic acid. It also shifts the equilibrium in the direction of formic acid. To keep undesirable reesterification as low as possible, the time of direct contact between methanol and formic acid must be as short as possible, and separation must be carried out at the lowest possible temperature. Introduction of methyl formate into the lower part of the column in which lower boiling methyl formate and methanol are separated from water and formic acid, has also been suggested. This largely prevents reesterification because of the excess methyl formate present in the critical region of the column. Dehydration of the Hydrolysis Mixture Formic acid is marketed in concentrations exceeding 85 wt %; therefore, dehydration of the hydrolysis mixture is an important step in the production of formic acid from methyl formate. For dehydration, the azeotropic point must be overcome. The concentration of formic acid in the azeotropic mixture increases if distillation is carried out under pressure, but the higher boiling point at high pressure also increases the decomposition rate of formic acid. At the same time, the selection of sufficiently corrosion-resistant materials presents considerable problems. A number of entrainers have been proposed for azeotropic distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html technologyComment of oxidation of butane (RER): The liquid-phase oxidation of hydrocarbons is an important process to produce acetic acid, formic acid or methyl acetate. About 43 kg of formic acid is produced per ton of acetic acid. Unreacted hydrocarbons, volatile neutral constituents, and water are separated first from the oxidation product. Formic acid is separated in the next column; azeotropic distillation is generally used for this purpose. The formic acid contains about 2 wt % acetic acid, 5 wt % water, and 3 wt % benzene. Formic acid with a content of about 98 wt % can be produced by further distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html

Markt für Ammoniak, wasserfrei, flüssig

technologyComment of ammonia production, steam reforming, liquid (RER w/o RU): This datasets corresponds to the technology used in European ammonia plants with natural gas based fuel and feedstock. The most efficient way of ammonia synthesis gas production is natural gas reforming with steam and air. The ammonia production process consists of several steps: desulphurization, primary production, secondary reforming, shift conversion, CO2 removal, methanation, synthesis gas compression and ammonia synthesis. technologyComment of ammonia production, steam reforming, liquid (RU): This datasets corresponds to the technology used in Russian ammonia plants with natural gas based fuel and feedstock. The most efficient way of ammonia synthesis gas production is natural gas reforming with steam and air. The ammonia production process consists of several steps: desulphurization, primary production, secondary reforming, shift conversion, CO2 removal, methanation, synthesis gas compression and ammonia synthesis. technologyComment of cocamide diethanolamine production (RER): Cocamide diethanolamine can be produced from different reaction of diethanolamine with methyl cocoate, coconut oil, whole coconut acids, stripped coconut fatty acids. Cocamide diethanolamine is modelled here as the 1:1 reaction of coconut oil and diethanolamine. The reaction occurs at a maximum temperature of 170 degrees Celcius with the aid of an alkaline catalyst. The catalyst in not consider significant in terms of emissions for the reaction and it is therefore not included in this dataset and it is assumed to be taken into consideration in the input of chemical factory. The production process can also be a 1:2 fatty acids reaction. This results in a lower quality product with output of free diethanolamine and ethylene glycol (Elbers 2013). Coconut oil composition varies, here it assumed an average composition CH3(CH2)12CONH2. This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The basic principles of the model have been published in literature (Hischier 2005, Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability). The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. Reference(s): Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de Elbers, E. 2013. Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-water. In IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS, Vol.101, pp.141-148 WHO Press, Geneva. For more information on the model please refer to the dedicate ecoinvent report, access it in the Report section of ecoQuery (http://www.ecoinvent.org/login-databases.html)

Markt für Propylenglykol, flüssig

technologyComment of propylene glycol production, liquid (RER): Production from propylene oxide and water with a process yield of 95%. Inventory bases on stoechiometric calculations. The emissions to air (0.2 wt.% of raw material input) and water were estimated using mass balance. Treatment of the waste water in a internal waste water treatment plant assumed (elimination efficiency of 90% for C).

Toxicological basis data for the derivation of EU-LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2- dimethoxyethane and 1,2-diethoxyethane

Gegenstand dieser Studie war die Auswertung der toxikologischen Daten für fünf Substanzen als Grundlage für die Ableitung von EU-LCI Werten. EU-LCI Werte dienen der Charakterisierung der Toxizität leicht flüchtiger organischer Verbindungen, die aus Bauprodukten emittieren. Sie sind definiert als diejenige Konzentration, oberhalb derer im Innenraum Wirkungen auf die menschliche Gesundheit eintreten können und werden von der EU-LCI Arbeitsgruppe beschlossen. Diese Gruppe hat auch ein harmonisiertes Vorgehen für die Ableitung der EU-LCI Werte aus toxikologischen Daten entwickelt. Bei den im Rahmen dieses Vorhabens abgeleiteten LCI-Werten handelt es sich um Vorschläge. Die endgültigen EU-LCI Werte werden von der EU-LCI Arbeitsgruppe festgelegt. Für folgende Substanzen wurden in dieser Studie toxikologische Evaluierungen durchgeführt und EU-LCI Werte abgeleitet: Neopentylglykol (CAS Nr. 126-30-7), EU-LCI: 8700 <mü>g/m3, basierend auf der höchsten nach wiederholter Verabreichung in Ratten getesteten Konzentration (es wurden keine adversen Effekte beobachtet); Bernsteinsäurediisobutylester (CAS Nr. 925-06-4), EU-LCI: 35 <mü>g/m3, abgeleitet durch Analogbetrachtung von Bernsteinsäuredimethylester, basierend auf der Schädigung der Nasenschleimhaut in Ratten; Glutarsäurediisobutylester (CAS Nr. 71195-64-7), EU-LCI: 35 <mü>g/m3, abgeleitet durch Analogbetrachtung von Glutarsäuredimethylester, basierend auf der Schädigung der Nasenschleimhaut in Ratten; 1,2-Dimethoxyethan (CAS Nr. 110-71-4), EU-LCI: 100 <mü>g/m3, basierend auf der Teratogenität in Ratten; 1,2-Diethoxyethan (CAS Nr. 629-14-1), EU-LCI: 150 <mü>g/m3, basierend auf der Teratogenität in Mäusen. Quelle: Forschungsbericht

Umweltprobenbank Probenparameter Nr. H000: Glyphosat

Glyphosat N-(Phosphonomethyl)glycin Formel: C3H8NO5P CAS-Nummer: 1071-83-6 Erläuterung: Weit verbreitetes Herbizid, dessen Gefahrenpotenzial für Gesundheit und Umwelt derzeit diskutiert wird

Teilprojekt 6: LCA

Das Projekt "Teilprojekt 6: LCA" wird vom Umweltbundesamt gefördert und von DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V. durchgeführt. TRANSFORMATE nutzt die effizientesten Prozesse, um CO2 in Wertprodukte umzuwandeln. Dabei wird CO2 in einem ersten Schritt durch elektrochemische Konversion zu Ameisensäure reduziert. Im zweiten Schritt wird dann die Ameisensäure in einen Bioreaktor eingespeist, wo Ameisensäure-verstoffwechselnde Mikroorganismen die Ameisensäure hoch selektiv in Spezialchemikalien umwandeln. Projektziele: 1. Optimierung der kathodischen CO2-Reduktion zu Ameisensäure bei gleichzeitiger Kopplung mit der Wasser-Oxidation. Wir werden Membran-Elektroden-Einheiten (MEAs) mit polymeren Ionischen Flüssigkeiten (PILs) als Mediator in der katalytischen Schicht entwickeln. PILs eröffnen die Möglichkeit, die Produktionsrate und die Effizienz der CO2-Reduktion bei niedrigen pH-Werten und niedrigen Salzfrachten zu steigern. Wir werden innerhalb des Konsortiums eine spaltlose Elektrolyseur-Zelle, einen Stack-Prototypen bauen und eine Produktionsstrategie für das Scale-up der Stacks aufstellen. 2. Design und Konstruktion eines Ralstonia eutropha-Stamms mit hoch-effizienter Ameisensäure-Assimilation und Produktion von Biopolymeren und Crotonsäure. Wir werden das Bakterium R. eutropha durch die Integration des synthetischen, reduzierten Glycin-Stoffwechselwegs (rGlyP; effizientester Stoffwechselweg für die aerobe Ameisensäure-Assimilation) dazu befähigen, auf Ameisensäure zu wachsen. Darüber hinaus werden zwei Produktionsstämme konstruiert, die 1. Polyhydroxybuttersäure (PHB) in den Zellen akkumulieren und 2. Crotonsäure ins Medium sezernieren. 3. Integration des elektrochemischen und mikrobiellen Systems und Optimierung des Gesamtprozesses. Wir werden die Prototypen der CO2-Elektrolyseure direkt mit Labor-Bioreaktoren (2L) verbinden, um so das Gesamtsystem zu integrieren und im Betrieb zu untersuchen. Parallel dazu laufen LCA und TEA, um die Wirtschaftlichkeit und Ökobilanz des Gesamtsystems zu bilanzieren und so gezielt die kritischen Stellschrauben des Systems zu erkennen.

Genehmigungsverfahren gemäß § 16 Abs. 1 BImSchG für die wesentliche Änderung der Autofabrik der Firma AUDI AG Ingolstadt durch die Errichtung und den Betrieb eines Tanklagers A77

Die Firma AUDI AG hat mit Schreiben vom 09.01.2019 einen immissionsschutzrechtlichen Genehmigungsantrag beim Umweltamt der Stadt Ingolstadt zur wesentlichen Änderung des Automobilwerkes am Standort Ingolstadt, Auto-Union-Str. 1, 85045 Ingolstadt durch die Errichtung und den Betrieb eines Tanklagers A77 eingereicht. Im Zuge des Änderungsvorhabens wird als Ersatz für die beiden bestehenden Tankfelder A3 und A16 ein neues Tanklager A77 für die Lagerung von Ottokraftstoff (Sonderkraftstoff ASF), Dieselkraftstoff, AdBlue, Glykol, Scheibenreinigerkonzentrat (Ethanol) sowie Bremsflüssigkeit errichtet. Der Genehmigungsantrag umfasst im Wesentlichen die folgenden Anlagenkomponenten: 1. Errichtung und Betrieb eines Tankfeldes mit insgesamt 14 unterirdischen Lagerbehältern mit einem Fassungsvermögen von jeweils 60 m³ zur Lagerung der vorgenannten Produkte 2. Errichtung und Betrieb einer Abfüllfläche (21,5 m x 5 m) mit zwei Fernfüllschränken 3. Errichtung und Betrieb eines Pumpenhauses 4. Errichtung und Betrieb von insgesamt 7 Rohrleitungen vom Tanklager A77 in die Produktionshallen A1 bis A4 5. Errichtung und Betrieb von mehreren Vorlagebehältern für die Medien ASF, Diesel und AdBlue in den Produktionshallen A1 bis A4 von jeweils 300 l (Halle A4 nur 100 l) Im Rahmen des Genehmigungsverfahrens wurde gemäß § 9 Abs. 2 Nr. 2 und Abs. 4 i.V.m. § 7 Abs. 1 UVPG und Nr. 3.14 Spalte 2 der Anlage 1 zum UVPG eine allgemeine Vorprüfung des Einzelfalls vorgenommen.

1 2 3 4 5 6 7 8