Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.
Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.
Auf dem Weg zur Dekarbonisierung der deutschen Wirtschaft ist die Verfügbarkeit großer Mengen 'grünen' Wasserstoffs von entscheidender Bedeutung. Bis 2030 erwartet die Bundesregierung einen nationalen Wasserstoffbedarf von rund 90 bis 110 TWh. Der zusätzliche Verbrauch wird im Industriesektor (z.B. Stahlproduktion) und im Mobilitätsbereich mit Brennstoffzellen (z.B. Busse, Flugzeuge) benötigt. Da die nationale Produktion an grünen Wasserstoff in Deutschland jedoch für die nationalen Dekarbonisierungsziele nicht ausreicht, setzt die Bundesregierung auf umfangreiche Importe aus Regionen mit günstigen erneuerbaren Energien. Für einen energieeffizienten Wasserstofftransport ist die Umwandlung von Wasserstoff in Ammoniak, das eine hohe Wasserstoffdichte aufweist, sinnvoll. Die Rückgewinnung des Wasserstoffs aus Ammoniak erfolgt am Zielort über das sogenannte Ammoniak Cracking. Stand der Technik ist, dass die Ammoniakspaltung industriell bisher nur für kleine Nischenanwendungen, mit nur geringen Wasserstoffströmen (typische Größe: 1 - 2 t pro Tag) angewendet wird. Vor dem Hintergrund der nationalen Klimaschutzziele, der angestrebten Reduktion der CO2-Emissionen und der angespannten Versorgungslage mit Energierohstoffen, strebt das Forschungsprojekt HyPAC eine Transformation der deutschen Wirtschaft auf Wasserstoff-Basis an. Im Rahmen von HyPAC soll ein neues Verfahren zur Wasserstofferzeugung aus Ammoniak, entwickelt und erstmalig in einer Miniplant demonstriert werden. Linde strebt einen industriellen, leicht skalierbaren und energieeffizienten Ammoniak Cracking Prozess an, um im großen Maßstab Wasserstoff (~ 500 t pro Tag) in hoher Reinheit und zu attraktiven Preispfaden zentral zu erzeugen und für große industrielle Abnehmer, wie chemische Industrie, Wasserstoff-Pipeline-Netz oder Gasturbinen, bereitzustellen. Bei Projekterfolg kann das Verfahren einen großen Beitrag zur signifikanten Reduktion der CO2-Emissionen aus Stromerzeugung, Verkehr und Industrie, leisten.
Ziel des Projekts ist es Wirkzusammenhänge zwischen den europäischen Bereitstellungspotenzialen grünen Wasserstoffs und einem europäischen Wasserstoffmarkt aufzuzeigen sowie die makroökonomischen Effekte verschiedener Wasserstoffbereitstellungsoptionen für Deutschland zu untersuchen. Dazu werden die Bereitstellungspotenziale in Form von Kosten-Potenzialkurven unter Berücksichtigung relevanter Standortfaktoren ermittelt und sowohl die Daten als auch eine grafische Aufbereitung auf einer Website bereitgestellt. Zu den Standortfaktoren zählen z.B.die lokale Verfügbarkeit erneuerbaren Stroms, Wassers oder nahegelegener Transportinfrastrukturen, wie Strom- oder Gasnetze, Straßen, Schienen oder Wasserwege. Methodisch werden im Rahmen des Projekts ein europäisches Wasserstoffmarktmodell sowie ein agentenbasiertes makroökonomisches Modell zur Bewertung von Wasserstoffbezugsstrategien entwickelt. Die Daten und Quellcodes aller Modelle werden gemäß Open Science veröffentlicht, so dass sie AnwenderInnen aus Wirtschaft und Wissenschaft auch für eigene Analysen zur Verfügung stehen.
1
2
3
4
5
…
54
55
56