Das Gesamtziel dieses Projektes besteht im Aufbau einer Pilotanlage zur Herstellung von Dämmstoffen auf Basis von Buchenholz sowie der begleitenden Forschungsaktivitäten. In der geplanten Anlage sollen aus Buchenholzfasern flexible Dämmstoffe (Dämmstoffmatten und Holzschäume bzw. Granulate) als Füllstoff für Hohlziegel (lochbildabhängig und lochbildunabhängig) hergestellt werden.
Das Gesamtziel dieses Projektes besteht im Aufbau einer Pilotanlage zur Herstellung von Dämmstoffen auf Basis von Buchenholz sowie der begleitenden Forschungsaktivitäten. In der geplanten Anlage sollen aus Buchenholzfasern flexible Dämmstoffe (Dämmstoffmatten und Holzschäume bzw. Granulate) als Füllstoff für Hohlziegel (lochbildabhängig und lochbildunabhängig) hergestellt werden.
Das Gesamtziel dieses Projektes besteht im Aufbau einer Pilotanlage zur Herstellung von Dämmstoffen auf Basis von Buchenholz sowie der begleitenden Forschungsaktivitäten. In der geplanten Anlage sollen aus Buchenholzfasern flexible Dämmstoffe (Dämmstoffmatten und Holzschäume bzw. Granulate) als Füllstoff für Hohlziegel (lochbildabhängig und lochbildunabhängig) hergestellt werden.
Erforscht wird die Dynamik feuchter Granulate, etwa feuchter Sand oder feuchte Böden. Es wird mit experimentellen, analytisch-theoretischen und numerischen Methoden versucht, die elementaren Mechanismen zu verstehen, die hinter Erdrutschen und Dünenwanderung, aber auch Wasserhaltefähigkeit von sandigen Böden, am Werk sind.
Das Gesamtziel dieses Projektes besteht im Aufbau einer Pilotanlage zur Herstellung von Dämmstoffen auf Basis von Buchenholz sowie der begleitenden Forschungsaktivitäten. In der geplanten Anlage sollen aus Buchenholzfasern flexible Dämmstoffe (Dämmstoffmatten und Holzschäume bzw. Granulate) als Füllstoff für Hohlziegel (lochbildabhängig und lochbildunabhängig) hergestellt werden.
Partikeldämpfer sind einfach zu bauende passive Dämpfungselemente. Hierbei werden Behältnisse mit granularen Partikel befüllt und an die schwingende Struktur angebracht oder darin integriert. Aufgrund der Schwingungen werden die Partikel in Bewegung versetzt und durch Reib- und Stoßvorgängen zwischen den Partikeln wird Energie dissipiert. Dies sind nichtlineare Effekte die zu einem hoch nichtlinearen Verhalten der Partikeldämpfer führen können. Partikeldämpfer sind einfach anzuwenden, auch bei schon existierenden Maschinen. Es konnte gezeigt werden, dass diese Dämpfer mindestens so effektiv wie andere Dämpfungsmethoden sein können. Die Mechanismen der Energiedissipation sind nicht auf eine einzelne Frequenz beschränkt sondern wirken über einen breiteren Frequenzbereich. Darüber hinaus sind Partikeldämpfer sehr anpassungsfähig, beispielsweise durch verschiedene Formen und Größen des Dämpferbehältnisses, der Anzahl der Partikel oder durch verschiedene Materialien. Die numerischen und experimentellen Analysen aus der ersten Projektphase haben gezeigt, dass der Großteil der dissipierten Energie durch Partikelstöße entsteht. Deshalb sollte die Stoßzahl so klein wie möglich sein, damit eine möglichst große Menge an Energie dissipiert. Um eine möglichst große Übertragung von kinetischer Energie der schwingenden Struktur auf die Partikel zu ermöglichen, sind schwere, metallische Partikel wie Stahl, Messing oder Wolfram zu bevorzugen. Für diese Materialien haben FE Simulationen gezeigt, dass die Stoßzahl für Partikel-Partikel Stöße recht hoch ist und somit die Menge an dissipierter Energie limitiert ist. Ein Weiterer großer Nachteil bei der Benutzung von metallischen Partikeln für Partikeldämpfer ist die Erzeugung von nicht unerheblichem Lärm durch die Partikelstöße. Es gibt bereits erste Versuche von Partikeldämpfern mit polymeren Granulaten. Allerdings wird aufgrund der geringeren Partikelmasse eine geringere Dämpfung der Struktur erzielt. Das Forschungsziel ist die Weiterentwicklung einer simulationsbasierten Entwicklungsmethode von verteilten Partikeldämpfern für die passive Schwingungsdämpfung von Leichtbaustrukturen und -maschinen. Dieses Projekt hat dabei das Ziel komplett neue hybride Partikeldämpfer zu entwickeln und zu bewerten. Dadurch werden weitere Freiheitsgrade bezüglich des Designs geschaffen, indem verschiedene Materialien verwendet werden und somit die Masse der Partikel und die Stoßzahl einzelner Partikelkollisionen teilweise entkoppelt voneinander sind. Hierbei sollte ein schweres metallisches Partikel mit einem viskoelastischen Material mit hoher Dämpfung gepaart werden. Durch diesen Ansatz entsteht eine komplett neue Designphilosophie, um kleine Partikeldämpfer zu erhalten, welche deutlich mehr Energie dissipieren als vergleichbare homogen Partikeldämpfer mit ähnlicher Masse. Als Nebeneffekt wird zudem erwartet, dass diese hybriden Partikeldämpfer deutlich geräuschärmer als die klassischen Partikeldämpfer sind.
Die Abscheidung von Kohlendioxid (Carbon Capture) wird für viele energieintensive und schwer dekarbonisierbare Prozesse wesentlich sein, um zukünftige CO2-Ziele einhalten zu können. Es gibt unterschiedliche Verfahren zur CO2-Abscheidung, wobei die Aminwäsche (Absorption) am weitesten verbreitet ist und in großem Maßstab kommerziell eingesetzt wird. Den Vorteilen der hohen Beladungskapazität und Selektivität stehen bei diesem Verfahren die Nachteile eines hohen Energiebedarfs, hoher Investitionskosten und verfahrensbedingter Aminemissionen gegenüber. Eine äußerst attraktive Alternative stellen adsorptive Trennverfahren mit festen Adsorbentien dar, mit dem Potential für geringeren Energiebedarf, einer Vermeidung von Aminschlupf durch die feste Bindung an den Träger und sehr guter Skalierbarkeit des Verfahrens. Als Adsorbentien für die CO2-Abtrennung werden heute praktisch ausschließlich Granulate oder Pellets betrachtet, da keine Alternativen in großem Maßstab verfügbar sind. Zur Behandlung von sehr großen Volumenströmen sind strukturierte Packungen, z.B. Wabenkörper, aufgrund Ihres deutlich günstigeren Verhältnisses von Druckverlust zu spezifischer Oberfläche von wesentlichem Vorteil im Vergleich zu Festbettschüttungen. Strukturierte Adsorbentien zur CO2-Abtrennung sind derzeit nicht in industriellem Maßstab verfügbar. Die Entwicklung und Fertigung ist kapitalintensiv und erfordert sehr spezielles Know-how auf dem Gebiet der Materialwissenschaften. Ziel des Forschungsvorhabens ist es, einen auf aminfunktionalisierten Wabenkörpern basierenden Adsorptionsprozess zur effizienten Abscheidung von CO2 aus Prozess- oder Rauchgasen zu entwickeln und anhand ausgewählter Anwendungsbeispiele zu demonstrieren.
Die Abscheidung von Kohlendioxid (Carbon Capture) wird für viele energieintensive und schwer dekarbonisierbare Prozesse wesentlich sein, um zukünftige CO2-Ziele einhalten zu können. Es gibt unterschiedliche Verfahren zur CO2-Abscheidung, wobei die Aminwäsche (Absorption) am weitesten verbreitet ist und in großem Maßstab kommerziell eingesetzt wird. Den Vorteilen der hohen Beladungskapazität und Selektivität stehen bei diesem Verfahren die Nachteile eines hohen Energiebedarfs, hoher Investitionskosten und verfahrensbedingter Aminemissionen gegenüber. Eine äußerst attraktive Alternative stellen adsorptive Trennverfahren mit festen Adsorbentien dar, mit dem Potential für geringeren Energiebedarf, einer Vermeidung von Aminschlupf durch die feste Bindung an den Träger und sehr guter Skalierbarkeit des Verfahrens. Als Adsorbentien für die CO2-Abtrennung werden heute praktisch ausschließlich Granulate oder Pellets betrachtet, da keine Alternativen in großem Maßstab verfügbar sind. Zur Behandlung von sehr großen Volumenströmen sind strukturierte Packungen, z.B. Wabenkörper, aufgrund Ihres deutlich günstigeren Verhältnisses von Druckverlust zu spezifischer Oberfläche von wesentlichem Vorteil im Vergleich zu Festbettschüttungen. Strukturierte Adsorbentien zur CO2-Abtrennung sind derzeit nicht in industriellem Maßstab verfügbar. Die Entwicklung und Fertigung ist kapitalintensiv und erfordert sehr spezielles Know-How auf dem Gebiet der Materialwissenschaften. Ziel des Forschungsvorhabens ist es, einen auf aminfunktionalisierten Wabenkörpern basierenden Adsorptionsprozess zur effizienten Abscheidung von CO2 aus Prozess- oder Rauchgasen zu entwickeln und anhand ausgewählter Anwendungsbeispiele zu demonstrieren.
Origin | Count |
---|---|
Bund | 534 |
Land | 13 |
Type | Count |
---|---|
Chemische Verbindung | 76 |
Ereignis | 2 |
Förderprogramm | 394 |
Text | 66 |
Umweltprüfung | 3 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 114 |
offen | 392 |
unbekannt | 39 |
Language | Count |
---|---|
Deutsch | 536 |
Englisch | 35 |
Resource type | Count |
---|---|
Archiv | 39 |
Bild | 1 |
Datei | 39 |
Dokument | 49 |
Keine | 351 |
Webseite | 147 |
Topic | Count |
---|---|
Boden | 340 |
Lebewesen und Lebensräume | 308 |
Luft | 253 |
Mensch und Umwelt | 545 |
Wasser | 224 |
Weitere | 461 |