API src

Found 1267 results.

Related terms

Simulation der Schadstoffausbreitung in der Atmosphaere ueber See und im kuestennahen Bereich

Numerische Modelle zur Simulation der Schadstoffausbreitung in der Atmosphaere sind wesentliche Hilfsmittel fuer Immissionsprognosen, Stoerfallanalysen und die Interpretation der Messergebnisse von Luftgueteueberwachungssystemen. Die Modelle beduerfen wegen der Komplexitaet der atmosphaerischen Vorgaenge jedoch einer umfassenden experimentellen Verifikation in ihrem Anwendungsgebiet. Das Vorhaben beinhaltet zum einen die Verifikation und Weiterentwicklung der Simulationsmodelle ATMOS (1) und MODIS (2) mit Hilfe der Messergebnisse der Lidar-Fernmessstationen auf der Georgswerder Hoehe in Hamburg (Vorhaben UFOKAT'79: LU 31-056/DB-Nr:00009829) bzw. auf dem MS TABASIS (Verbrennung chlorierter Kohlenwasserstoffe auf See; Vorhaben UFOKAT'79: AB 52-007/DB-NR: 00009827). Zum anderen dienen die Modelle zur Interpretation und Verallgemeinerung der Feldmessdaten dieser Stationen. Die fuer die Modelle erforderlichen meteorologischen Eingangsdaten werden begleitenden meteorologischen Messungen entnommen bzw. mit Hilfe eines meteorologischen Grenzschichtmodells gewonnen. Ergaenzend werden Labormessungen zur Bestimmung von Washout-Koeffizienten durchgefuehrt.

Bedeutung von mehrjährigen und nicht mehrjährigen Flüssen für Kohlendioxid- und Methanemissionen bei Regenereignissen und Trocknungs-Wiederbefeuchtungszyklen (StreamFlux)

Fließgewässer tragen wesentlich zum globalen organischem Kohlenstoffkreislauf und zu der Emission der klimarelevanten Gase Kohlendioxid (CO2) und Methan (CH4) bei. Die Dynamik der CO2-Emissionen wurde mit dem Wasserabfluss und der Hydrologie des Einzugsgebietes in Verbindung gebracht, während CH4 mit dem Biom des Fließgewässers und der umgebenden Landnutzung korrelierte. Die Mehrzahl dieser Studien wurde jedoch an ganzjährig wasserführenden (perennierenden) Fließgewässern und unter stabilem Wasserabfluss durchgeführt, mit einer nur begrenzten Abdeckung von Hochwasserepisoden (Niederschlagsereignissen). Bislang sind daher Gasemissionen von nicht ganzjährig wasserführenden (intermittierenden) Fließgewässern nicht ausreichend in den lokalen und regionalen Kohlenstoff-Budgets enthalten. Diese erlangen jedoch erhöhte Bedeutung, da die aktuellen Prognosen zum Klimawandel darauf hindeuten, dass das Ausmaß und die Häufigkeit schwerer klimatischer Ereignisse wie Überschwemmungen und Dürre wahrscheinlich zunehmen wird. Das vorgeschlagene Projekt zielt darauf ab, diese wichtige Forschungslücke zu schließen, indem die treibenden Kräfte und die jahreszeitliche Relevanz der CO2- und CH4-Emissionen nicht nur in perennierenden sondern auch in intermittierenden Fließgewässern untersucht werden sollen. Das erste Ziel des Projekts ist die Quantifizierung der lokalen Relevanz von ereignisgesteuerten CO2- und CH4-Emissionen aus perennierenden Fließgewässern mittels einer Kombination von i) State-of-the-art Techniken zur Quantifizierung von Gasflüssen über die Wasser-Luft-Grenzfläche, ii) Sensoren nach dem Stand der Technik und In-situ-Gasmessungen und iii) etablierten Verfahren zur Bewertung der mikrobiellen Gemeinschaft und potentieller metabolischer Aktivität Das zweite Projektziel ist die Untersuchung des Kohlenstoff-Kreislaufs und der Gasemissionen von kontinentalen, nicht-perennierenden Fließgewässern, mit Schwerpunkt auf Trocknungs- und Wiederbefeuchtungszyklen. Das Projekt konzentriert sich auf das Einzugsgebiet des Flusses Queich (271 km2) in Rheinland-Pfalz. Der Fluss entspringt in einem natürlichen Reservoir (Biosphärenreservat Pfälzerwald) und fließt entlang eines ausgeprägten Landschaftsgefälles (natürlich bis anthropogen beeinflusst). Diese Umgebung bietet ein ideales Untersuchungsgebiet um die Rolle der Hydrologie und der Bodennutzung für kohlenstoffrelevante Gasemissionen aus Fließgewässern zu erforschen. Das übergeordnete Ziel des Projekts ist die Quantifizierung der Beiträge von episodischen (ereignisbasierten) Einflüssen und von saisonalen Trocknungs-Wiederbefeuchtungszyklen zum lokalen und regionalen Kohlenstoff-Kreislauf. Die Projektdaten werden mit zusätzlichen hydrologischen und biogeochemischen Daten in bestehenden geografischen Informationssystemen kombiniert, um die Entwicklung von Upscaling-Verfahren zu ermöglichen, die die oben genannten Beiträge schließlich in umfangreiche Budgets für den Kohlenstoffkreislauf überführen können.

Chemie der belasteten Atmosphaere

Problemfeld: Aufklaerung der Chemie in der verschmutzten Atmosphaere, insbesondere der Chemie der Schwefel- und Stickstoffverbindungen. Aufgabenstellung: Fragen des NOx-Abbaus in der planetaren Grenzschicht werden untersucht. Besonders wichtig ist die Messung der SO2-Radikale mittels Matrixisolation und EPR-Nachweis.

Der Einfluss von Bodenmikroorganismen auf die Mineralisierung organischer Substanz in Mikrohabitaten

Das Ziel dieses Projektes ist es, die Funktion von Bodenmikroorganismen für die Stabilisierung und die Mineralisierung von organischen Substanzen an der Grenzfläche zwischen Boden und Streustoffen zu ermitteln. Mit diesem Arbeitsschwerpunkt soll ein Beitrag zum Thema Nummer 1 'Stabilisierung durch strukturchemisch bedingte Eigenschaften (Rekalzitranz)' des DFG-Programmes geleistet werden. Mikrokosmosexperimente im Labor sollen den Zusammenhang zwischen der Sukzession von mikrobiellen Lebensgemeinschaften, der Substratverfügbarkeit an der Grenzfläche zwischen Streu und Boden und der Produktion von Bodenenzymen, die für den Abbau von organischen Verbindungen verantwortlich sind, klären. Ein besonderer Schwerpunkt soll darauf gelegt werden, den Zusammenhang zwischen Lokalisation und Funktion der Bodenorganismen in ihrem Habitat zu erfassen. Die Übertragbarkeit der in den Laborexperimenten gewonnen Daten auf die Situation im Freiland soll durch die Untersuchung der kleinräumigen Variabilität bodenmikrobiologischer Prozesse im Freiland (jeweils zwei ackerbauliche und zwei forstlich genutzte Standorte) überprüft werden. Ein ausgewählter Waldstandort soll zudem in allen Kompartimenten (Horizonte, Grenzschichten, Aggregatgrößenfraktionen) genauer betrachtet werden, um Aussagen über die quantitative Relevanz der einzelnen Vorgänge abzuleiten.

Turbulenzinteraktionen in der atmosphärischen Grenzschicht: Ein skalenübergreifender Ansatz zur Aufklärung oberflächennaher Austauschprozesse

Die Atmosphäre und die Vegetation der Erdoberfläche beeinflussen sich gegenseitig durch bidirektionale Austauschprozesse. Modelle zur Wetter- und Klimavorhersage basieren auf einem mechanistischen Verständnis dieser Interaktionen. Die Vorhersagen und die grundlegenden Theorien funktionieren allerdings nur im Falle einer gut durchmischten (turbulenten) atmosphärischen Grenzschicht. Wenn jedoch stabile atmosphärische Bedingungen vorherrschen, wie typischerweise nachts der Fall, dann sind die bisherigen Theorien nicht ausreichend, um zuverlässige Vorhersagen zu treffen. Um oberflächennahe turbulente Austauschprozesse während stabiler atmosphärischer Schichtung mechanistisch zu verstehen und neue Theorien zu entwickeln, sind zunächst neuartige Mess- und Analyse-Methoden notwendig. Ziel dieses Projekts ist die Beobachtung und Charakterisierung von oberflächennahen Prozessen in der stabilen atmosphärischen Grenzschicht durch eine neuartige Kombination von Mess- und Analysemethoden. Mit einem hochauflösenden in-situ Messkubus (20x20x5m), der sich innerhalb eines größeren mittels Fernerkundung überwachten Raumes (500x500x1000m) befindet, können Bewegung und Strukturen von Temperatur gleichzeitig in Raum und Zeit erfasst werden. Dieser skalenübergreifende Ansatz erlaubt es, nicht-periodische, nicht gut gemischte und räumlich heterogene Bewegungen der Luft nahe der Erdoberfläche zu erfassen. Die gewonnenen Daten werden mittels neuester stochastischer Auswerteverfahren analysiert, um die (nicht-)turbulenten Bedingungen und deren Durchmischung zu charakterisieren. Der wissenschaftliche Gewinn des Projektes liegt in einem wegweisenden innovativen Ansatz, um Modelle in den Bereichen Strömungsmechanik und Erd-System Wissenschaften zu validieren, und so zu einem verbesserten Verständnis unseres Lebensraums, der Schnittstelle zwischen Land und Atmosphäre, zu führen.

Stroemungen von temperaturgeschichteten turbulenten Grenzschichten

Mit dem vorhandenen Windkanal koennen temperaturgeschichtete turbulente Grenzschichten erzeugt werden (Grenzschichtdicke ca. 0,7 bis 1 m), die Aehnlichkeit mit bodennahen atmosphaerischen Grenzschichten aufweisen (Simulationsbereich der Gradienten-Richardsonzahl: -0,2 kleiner gleich Ri kleiner gleich +0,2). Die gewuenschten Eigenschaften der Grenzschichten sind durch unterschiedliche Bodenrauhigkeit, Heizen und Kuehlen des Bodens und Aufheizen des ankommenden Luftstroms im erwaehnten Simulationsbereich reproduzierbar einstellbar. Die neu entwickelte Hitzdrahtmesstechnik (X-Draht-Sonde mit zwei Temperaturfuehlern) liefert fuer starke Geschwindigkeits- und Temperaturgradienten einen optimalen halbempirischen Zusammenhang zwischen CTA-Signal und augenblicklicher Geschwindigkeit und Temperatur (im Bereich 1 m/s kleiner gleich U kleiner gleich 10 m/s und 10 Grad Celsius kleiner gleich T kleiner gleich 80 Grad Celsius). Die experimentellen und theoretisch-numerischen Untersuchungen befassen sich mit den Stoerungen der turbulenten Grenzschichten durch abrupte Aenderungen der Randbedingungen und durch um- bzw. ueberstroemte Hindernisse, sowie mit der Ausbreitung inerter Stoffbeimengungen in der gestoerten bzw. ungestoerten Stroemung. Ziele der Untersuchungen sind, die Effekte der Temperaturschichtung und der unterschiedlichen Stoerungen moeglichst getrennt zu erfassen und Datensaetze zu beschaffen, die es ermoeglichen, mathematische Modelle zu testen und zu entwickeln.

Heterogene Photokatalyse: NOx-Reduktion und Kohlenwasserstoff-Oxidation an Halbleitern

Im Zusammenhang mit der Reinigung von durch Kohlenwasserstoffe bzw. Stickoxide belasteten Abgasen ist der Einsatz von Halbleitern, wie z.B. TiO2, als Photokatalysatoren vor allem deshalb interessant, weil die Verbrennungs- bzw. Reduktionsreaktionen bei Raumtemperatur ablaufen können. Die praktische Anwendung ist allerdings durch die bisher erreichten, noch zu geringen Katalysatoraktivitäten begrenzt. Im Rahmen des Projektes sollen der Einfluss von Lichtwellenlänge, Lichtintensität und Kristallitgröße auf Geschwindigkeit und Selektivität (z.B. NO2, NO, N2O, N2) der Umsetzung untersucht werden. Es umfasst die Katalyse aus Sicht der Technischen Chemie und das Problem der Herstellung und Charakterisierung nanokristalliner, d.h. grenzflächendominierter Materialien aus Sicht der Festkörper Physikochemie. Ziel dieser Zusammenarbeit ist es vor allem, am Beispiel ausgewählter Reaktionen die Einflüsse der Eigenschaften des Katalysatormaterials auf den Ablauf von mit Photohalbleitern katalysierten Gasreaktionen herauszuarbeiten und in einem Modell zusammenzuführen.

BOREAL- Follow-on Studies of German National Climate Programme - Part Landsurface Climatology: Studies of the Energy Budget of Subpolar Ecosystems Using Satellite Data and GIS-Technique

These studies are continuing the work, which was carried out within a project of the German National Climate Research Programme of the German Ministry of Research and Technology (BMFT) - part Landsurface Climatology (1986-1990). In two research areas in a subpolar environment of Northern Sweden satellite data and meteorological models are used to study the energetic processes at the soil-vegetation-atmosphere-interface and to simulate with different scenarios the effect of a change of vegetation types (possible due to a global warming) on the energy budget. Another aspect is to use high-resolution satellite data for environmental monitoring of the subpolar birch forest. One location is near the Abisko Research Station of the Swedish Academy of Natural Sciences, the other is around the Tarfala Glaciological Research Station of the University of Stockholm.

Multi Skalen Modellierung von Abtragprozessen bei Biofilmen mit einem poroviskoelastischen Modell

Das Biofilmwachstum in Biofilmreaktoren wird hauptsächlich durch den Abtragprozess reguliert. Den Abtragprozess zu kontrollieren ist daher ein wichtiges Anliegen für den stabilen Betrieb eines Bioreaktors. Zur Kontrolle des Reaktors und um die größte Effizienz zu erreichen sind mathematische (bzw. numerische) Modelle, die den Abtragsprozess darstellen, hilfreich. Solche Modelle können möglicherweise sogar für den Entwurf von Biofilmreaktoren nützlich zu sein. In diesem Projekt soll ein multidimensionales, poroviskoleastisches Biofilm Modell entwickelt werden, das den Abtragsprozess abbildet. Dabei soll auch der Abtrag durch das Auslösen von größeren Stücken ('sloughing'), das durch die Schubspannungen an der Biofilm Grenzfläche und durch das Spannungsfeld im Biofilm entsteht, erfasst werden. Das Modell für den Abtrag soll basierend auf den Schubspannungen an der Grenzfläche und dem Spannungsfeld im Biofilm formuliert werden. Das Modell wird mit experimentellen Beobachtungen kalibriert und validiert. Biofilm Modelle, die für Reaktoren verwendet werden, sind in der Regel eindimensional (1D). Aus diesem Grund soll in diesem Projekt mittels Modellrechnungen mit dem validierten multi-dimensionalen Abtragmodell ein vereinfachtes ('upscaled') 1D Modell entwickelt werden.

Vertikale Verteilung von Wolkenkondensationskernen in marinen und kontinentalen Luftmassen in Europa und ihre Verbindung zur Wolkentropfenanzahlkonzentration in warmen Wolken

Die Anzahl der verfügbaren Wolkenkondensationskerne (CCN) beeinflusst maßgeblich die mikrophysikalischen Wolkeneigenschaften, wie z.B. die Wolkentropfenanzahlkonzentration (CDNC) und deren Größenverteilung. CDNC und die Tropfengröße steuern sowohl die Strahlungseigenschaften als auch die Lebensdauer von Wolken. Dies wirkt sich komplex auf die Energiebilanz der Erde aus. Aktuelle Klimamodelle basieren häufig auf Annahmen über CCN Anzahlkonzentrationen und andere CCN bezogene Eigenschaften (z.B. Hygroskopizität), da für viele Regionen auf der Erde repräsentative Daten fehlen. Wenn vorhanden, handelt es sich bei diesen CCN Daten um bodengebundene Messungen, welche somit nicht - mit Ausnahme von Bergstationen - in der für Wolkenbildungsprozesse relevanten Höhe durchgeführt wurden. Für die Karibikregion wurde gezeigt, dass die bodengebundenen CCN Messungen für die gesamte marine Grenzschicht repräsentativ zu sein scheinen also auch für die Wolkenbildungsregionen. Im hier vorgeschlagenen Projekt wollen wir überprüfen, ob bodengebundene CCN Messungen auch in anderen Erdregionen repräsentativ sind für die CCN Anzahl in der Wolkenbildungsregion, und wenn ja, unter welchen Bedingungen. Dies würde die Anwendung von CCN Daten in Modellen stark vereinfachen. Dazu wird die Gültigkeit der Beobachtungen in der Karibik, in zwei gegensätzlichen Umgebungen getestet werden, einmal in einer marinen und einmal in einer kontinentalen Umgebung. Die Messkampagne zu marinen CCN soll auf den Azoren (Portugal) durchgeführt werden. Wir werden kontinuierlich verfügbare CCN Daten von der Azoren Eastern Nordatlantik (ENA) Station auf der Insel La Graciosa (auf Meereshöhe) mit Daten von der Bergstation Pico (Pico Island, 2225 m ü.d.M.) kombinieren. Ergänzend werden CCN und CDNC Messungen auf der Helikopter-Messplattform (ACTOS) durchgeführt, um die vertikale Lücke zwischen den Meeresspiegel- und Bergmessungen zu schließen. Die kontinentalen bodengebundenen CCN Messungen werden kontinuierlich an der ACTRIS Station Melpitz durchgeführt. Die vertikale CCN und CDNC Verteilung wird in Melpitz mit Hilfe eines Ballons in mehreren einwöchigen Kampagnen einmal pro Jahreszeit gemessen werden. Darüber hinaus werden wir mit Hilfe der Aerosol-Wolken-Wechselwirkungsmetrik (ACI) die in der Wolke in-situ gemessen CCN Eigenschaften (das heißt Anzahl und Hygroskopizität) mit den CDNC quantitativ verbinden. Es wird außerdem eine Sensitivitätsstudie mit einem Cloud-Parcel Model durchgeführt, welches durch die realen Messungen in der Atmosphäre angetrieben werden wird. Dies wird einen Einblick in das Übersättigungsregime von frisch gebildeten Wolken gewähren.Die CCN Daten selbst, die Erkenntnisse zu CCN Eigenschaften und ihrer vertikalen Verteilung sowie die quantitative Verbindung zwischen CCN und CDNC werden im Hinblick auf das Verständnis und die Modellierung der Wolkentropfenaktivierung sowie der mikrophysikalischen Wolkeneigenschaften von außerordentlichem Wert sein.

1 2 3 4 5125 126 127