API src

Found 1263 results.

Related terms

SP 1.5 Molekulare Charakterisierung von gelösten organischen Stoffen in der Meeresoberflächen-Mikroschicht (SML) und deren Einfluss auf den anorganischen Kohlenstoffkreislauf

Unsere Motivation ist es, die Rolle von gelöstem organischem Material (DOM) in marinen Oberflächenfilmen (SML) als eine Schlüsselkomponente zu verstehen, die den Gasaustausch zwischen Atmosphäre und Meer, die Karbonatchemie, sowie die Ökophysiologie der assoziierten Organismen beeinflusst (Engel et al., 2017). Während unserer Vorarbeiten haben wir Hinweise auf einen bisher unbekannten Zusammenhang zwischen DOM und Karbonatchemie in der SML gefunden, sowie auf eine hohe räumlich-zeitliche Dynamik in der DOM-Zusammensetzung. Obwohl die hohe Heterogenität des SML-DOM-Geometabolom (d.h. die Gesamtheit des DOM-Pools, der durch biotische und abiotische Prozesse produziert und modifiziert wird) bekannt ist, gibt es wenige detaillierte Studien darüber. Insgesamt gibt es noch kein mechanistisches Verständnis darüber, unter welchen Bedingungen DOM in der SML in verschiedene chemische Fraktionen aufgeteilt wird. Dies liegt an der derzeit geringen Verfügbarkeit von Daten von einer größeren Anzahl von Untersuchungsstandorten unter unterschiedlichen Umwelt- und Versuchsbedingungen, sowie an einen Mangel an interdisziplinären Studien, die Physik, Geochemie und Biologie kombinieren. Mit anderen Worten, uns fehlen grundlegende (organo-)geochemische Informationen von der größten Luft-Wasser-Grenzfläche der Erde, mit unbekannten Konsequenzen für den damit verbundenen Austausch von klimarelevanten Gasen. In diesem Projekt streben wir an, diese Lücke durch sich ergänzende Messungen der DOM-Zusammensetzung und anorganischer Kohlenstoff-Systemparameter zu schließen. Die Relevanz für die Forschungseinheit BASS ergibt sich aus dem Ziel unseres Teilprojekts, die fehlenden grundlegenden biogeochemischen Informationen des SML-DOM-Inventars zur Verfügung zu stellen und sie in den Kontext der Ökosystemprozesse in der SML zu setzen, einschließlich der DOM-Produktion (SP1.1) sowie des mikrobiellen (SP1.2) und photochemischen (SP1.4) Umsatzes. Darüber hinaus werden wir den Beitrag des DOM-Geometaboloms zum Säure-Basen-Gleichgewicht der SML untersuchen, von dem wir erwarten, dass es die Gasgleichgewichte in der Grenzfläche - insbesondere im Kohlensäuresystem und damit auch die Treibhausgasflüsse - beeinflusst (SP2.1).

Abrupte Veränderungen von Süßwasserökosystemen unter Einwirkung von multiplen Stressoren wie steigenden Temperaturen, Nährstoffen und Pestiziden

Flache Süßwasser-Lebensräume bieten wichtige Ökosystem-Funktionen, sind aber von multiplen Stressoren bedroht. Während die Reaktion auf den globalen Klimawandel wahrscheinlich eher graduell ist, sind abrupte Veränderungen möglich, wenn kritische Schwellenwerte durch zusätzliche Effekte lokaler Stressoren überschritten werden. Die Analyse dieser Effekte ist komplex, da Stressoren additiv, synergistisch oder antagonistisch wirken können. CLIMSHIFT zielt auf ein mechanistisches Verständnis von Stressor-Interaktionen, die auf flache aquatische Ökosysteme wirken. Diese sind aufgrund ihrer hohen Oberfläche-zu-Volumen-Verhältnisse, der großen Ufer-Grenzfläche und der Grundwasser-Konnektivität besonders anfällig für Klimaerwärmung und Stoffeinträge aus landwirtschaftlichen Einzugsgebieten. Die komplexen Wechselwirkungen zwischen verschiedenen Primärproduzenten sowie assoziierten Konsumenten führen zum Auftreten stabiler Regime, und multiple Stressoren können nichtlineare Übergänge zwischen diesen Regimen auslösen, mit weitreichenden Folgen für entscheidende Ökosystemprozesse und -funktionen. Unsere Haupthypothese ist, dass erhöhte Temperaturen die negativen Auswirkungen der landwirtschaftlichen Stoffeinträge, die Nitrat, organische Pestizide und Kupfer enthalten, verstärken. Submerse Makrophyten, Periphyton und Phytoplankton als Primärproduzenten werden kombiniert mit Schnecken, die Periphyton und Pflanzen fressen, sowie benthischen und pelagischen Phytoplankton-Filtriern, Dreissena und Daphnien. Wir testen unterschiedliche Expositionsszenarien auf zwei räumlichen Skalen, Mikrokosmen im Labor und Mesokosmen im Freiland, um Effekte auf individueller, gemeinschaftlicher und ökosystemarer Ebene zu verstehen. Während des gesamten Projekts werden die Experimente durch Modellierungen ergänzt, um kritische Schwellwerte zu simulieren und Stress-Interaktionen vorherzusagen. Die Modellentwicklung wird in Zusammenarbeit mit allen Arbeitspaketen durchgeführt, um empirische Ergebnisse zu integrieren, unterschiedliche räumliche und zeitliche Skalen zu verknüpfen und Ergebnisse zu extrapolieren. Wir erwarten, dass kombinierte Stressoren zu plötzlichen Verschiebungen der Gemeinschaftsstruktur führen. Submerse Makrophyten werden voraussichtlich durch Phytoplankton oder benthische Algen ersetzt, mit Konsequenzen für wichtige Ökosystemfunktionen. Die Stärke unseres Antrages liegt darin, dass ökotoxikologische Stressindikatoren der Organismen wie Wachstum und Biomarker mit funktionalen Gemeinschafts-/Ökosystemansätzen kombiniert werden, die den Metabolismus und die Dynamik des Ökosystems betrachten. Das kombinierte Know-how von 5 Laboren mit komplementärem Fachwissen und allen notwendigen Einrichtungen wird die spezifische Projektfähigkeit sicherstellen. Unsere Ergebnisse sollen dazu beitragen, safe operating spaces/sichere Handlungsräume für eine nachhaltige Landwirtschaft und das Management von flachen aquatischen Ökosystemen in einer sich verändernden Welt zu definieren.

Dynamics of soil structure and physical soil functions and their importance for the acquisition of nutrients from the subsoil

Subsoils are an often neglected nutrient source for crops. The mobilisation and use of this potential nutrient source is an important factor in sustainable land use. Nutrient accessibility, release, and transport are strongly dependent on soil structure and its dynamics controlled by spatiotemporally variable physical functions of the pore network. A well structured soil, for example, with numerous interconnected continuous biopores will enhance root growth and oxygen availability and hence nutrient acquisition. In contrast to soils with a poorly developed structure nutrient acquisition is limited by restricted root growth and reduced aeration. The goal of this research project is to investigate different preceding crops and crop sequences in developing characteristic biopore systems in the subsoil and to elaborate their effect on the functional performance of pore networks with respect to nutrient acquisition. The main research question in this context is how soil structure evolves during cultivation of different plant species and how structure formation influences the interaction of physical (water and oxygen transport, shrinking-swelling) biological (microbial activity, root growth) and geochemical processes (e.g. by creating new accessible reaction interfaces). In order to study and quantify pore network architectures non-invasively and in three dimensions X-ray computed microtomography and 3D image analysis algorithms will be employed. The results will be correlated with small- and mesoscale physical/chemical properties obtained from in situ microsensor (oxygen partial pressure, redox potential, oxygen diffusion rate) and bulk soil measurements (transport functions, stress-strain relationships) of the same samples. This will further our process understanding regarding the ability of various crop sequences to form biopore systems which enhance nutrient acquisition from the subsoil by generating pore network architectures with an efficient interaction of physical, biological and geochemical processes.

Der Einfluss von bodennaher Turbulenz auf den Transport von Tracern in marinen Becken (ROBOTRACE)

Mit diesem Antrag sollen die physikalischen Prozesse identifiziert, analysiert und quantifiziert werden, die zu dem Austausch von gelösten Substanzen zwischen der Sediment-Wasser Grenzschicht, innerhalb der turbulenten Bodengrenzschicht (bottom boundary layer, BBL) und dem schwach turbulenten Inneren von geschichteten Becken beitragen. Im Fokus stehen dabei der Effekt von geneigten Hängen, an denen die Austauschprozesse durch das Zusammenwirken des Wiederaufbaus der Bodengrenzschichtschichtung , der Turbulenz innerhalb der BBL und sub-mesoskaligen Prozessen, von denen angenommen wird, dass sie den lateralen Austauschraten von Wasser bestimmen, verkompliziert werden. Diese Prozesse werden durch einen kombinierten Ansatz aus Feldmessungen und numerischer Modellierung untersucht. Insbesondere wird sich das Projekt dabei auf den Sediment-Wasser Austausch von Schwefelwasserstoff und Sauerstoff fokussieren, der in Situ mit Hilfe eines Eddy-Korrelationsmessgerätes als auch mit einem Mikroprofilsystem gemessen wird. Diese Messung wird durch ozeanographische Standardmessungen ergänzt, als auch durch Schiffs- und Verankerungsbasierte Turbulenzmessungen. Dieser Datensatz ist neuartig durch die Kombination von (A) der Sediment-Wasserflüsse von Sauerstoff und Schwefelwasserstoff und (B) der Turbulenzmessungen innerhalb der BBL und des Beckeninneren. Zusätzlich zu den Feldmessungen ist eine numerische Modellierung auf der Basis eines einfachen Sedimentmodells in Kombination mit einer Parametrisierung der Transportprozesse an der Sediment-Wassergrenzschicht geplant. Dieses Modell wird in idealisierten, eindimensionalen Parameterstudien, sowie in einem zweidimensionalen Setup verwendet, welches sich auf die Austauschprozesse der Bodengrenzschicht mit dem Beckeninneren konzentriert. Für die Untersuchung von dreidimensionalen Strukturen wie Eddies auf den Sauerstoff/Schwefelwasserstofftransport wird ein voll dreidimensionales realistisches Modell der zentralen Ostsee angewendet.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Untersuchung von Wolken und Niederschlag auf der Subkilometer-Skala mit HAMP - der Übergang zu leichtem Regen

Die Bildung von Niederschlag ist ein Schlüsselprozess in der Passatregion, um ein Regime von flacher Konvektion aufrechtzuerhalten, in dem das Wachstum der Grenzschicht und von konvektiven Wolken gehemmt wird. Dieser Effekt entscheidet mit darüber, wie diese Wolken auf die globale Erwärmung reagieren und ob sie den Klimawandel beschleunigen oder verzögern. Die Einflussfaktoren, die bestimmen ob eine flache Konvektionswolke zu regnen beginnt, sind bis heute nicht vollständig geklärt - insbesondere, weil umfassende, simultane Messdaten aller Einflussgrößen fehlen. Die EUREC4A Messkampagne ("Elucidating the Role of Cloud-Circulation Coupling in Climate") wird diese Beschränkung überwinden und erstmalig gleichzeitige Beobachtung der Makro- und Mikrophysik von Wolken, der großskaligen Dynamik und der zugrundeliegenden Energie- und Feuchteflüsse liefern. EUREC4A wird im Januar und Februar 2020 stattfinden und wird Wolken östlich von Barbados vermessen. Die Antragsteller sind Teil des internationalen Teams, das diese Kampagne initiiert hat, und werden das "HALO Microwave Package" (HAMP) bestehend aus einem Wolkenradar und Mikrowellenradiometern betreiben. Als Basis zur Beantwortung der wissenschaftlichen Fragen werden synergistische Verfahren zur Ableitung von Flüssig- und Regenwassergehalt entwickelt und eine Wolkendatenbank, in der bereits Daten der vorangegangen NARVAL-Kampagnen enthalten sind, erweitern. Diese Datenbasis wird sowohl zur Validierung von Satellitenprodukten als auch zur Evaluierung der nächsten Generation von Atmosphärenmodellen mit Maschenweitern zwischen 100 m und wenigen Kilometern eingesetzt.

Stroemungskraefte auf Teilchen in Grenzschichten mit oder ohne Wandberuehrung

Ziel ist, die auf kugelfoermige Teilchen wirkenden Stroemungskraefte und Drehmomente zu bestimmen, wenn die Teilchen auf einer ebenen oder gekruemmten Wand ruhen oder sich in Wandnaehe bewegen; damit sollen fuer diesen technisch bedeutsamen, bislang jedoch unerforschten Fall allgemeine Widerstandsgesetze formuliert werden; diese Erkenntnisse sollen bei der Auslegung von Filteranlagen oder von Stroemungsfoerderanlagen verwertet werden; unerwuenschte Feststoffablagerungen an Waenden in Foerderanlagen und Apparaten sollen hiermit erklaert werden koennen.

Multi Skalen Modellierung von Abtragprozessen bei Biofilmen mit einem poroviskoelastischen Modell

Das Biofilmwachstum in Biofilmreaktoren wird hauptsächlich durch den Abtragprozess reguliert. Den Abtragprozess zu kontrollieren ist daher ein wichtiges Anliegen für den stabilen Betrieb eines Bioreaktors. Zur Kontrolle des Reaktors und um die größte Effizienz zu erreichen sind mathematische (bzw. numerische) Modelle, die den Abtragsprozess darstellen, hilfreich. Solche Modelle können möglicherweise sogar für den Entwurf von Biofilmreaktoren nützlich zu sein. In diesem Projekt soll ein multidimensionales, poroviskoleastisches Biofilm Modell entwickelt werden, das den Abtragsprozess abbildet. Dabei soll auch der Abtrag durch das Auslösen von größeren Stücken ('sloughing'), das durch die Schubspannungen an der Biofilm Grenzfläche und durch das Spannungsfeld im Biofilm entsteht, erfasst werden. Das Modell für den Abtrag soll basierend auf den Schubspannungen an der Grenzfläche und dem Spannungsfeld im Biofilm formuliert werden. Das Modell wird mit experimentellen Beobachtungen kalibriert und validiert. Biofilm Modelle, die für Reaktoren verwendet werden, sind in der Regel eindimensional (1D). Aus diesem Grund soll in diesem Projekt mittels Modellrechnungen mit dem validierten multi-dimensionalen Abtragmodell ein vereinfachtes ('upscaled') 1D Modell entwickelt werden.

Was bestimmt die Konzentration von Aerosolpartikeln in der marinen Grenzschicht über dem atlantischen Ozean?

Aerosolpartikel spielen eine wichtige Rolle für das regionale und globale Klima. Weltweit gibt es deshalb zahlreiche Messstationen, von denen allerdings nur ein kleiner Teil die marine Grenzschicht (MBL) erfasst, obwohl etwa 70% der Erdoberfläche mit Wasser bedeckt sind. Dieses Projekt soll dazu beitragen, das Wissen über Quellen und Austauschprozesse von Aerosolpartikeln in der MBL mithilfe einer Messkampagne über den Azoren im Nordostatlantik, welche nahezu unbeeinflusst von lokalen Quellen sind, zu verbessern.Die zentrale Hypothese ist, dass sowohl Ferntransport aus Nordamerika, als auch Partikelneubildung in der freien Troposphäre (FT) und an Wolkenrändern mit anschließendem Vertikaltransport wesentlich zur Anzahlkonzentration der Aerosolpartikel in der MBL beitragen. Das Verständnis der Partikelquellen und Senken zusammen mit dem vertikalen Partikelaustausch zwischen MBL und FT ist daher eine Grundvoraussetzung für die Vorhersagbarkeit der Partikelanzahlkonzentration in den unteren Schichten der MBL wo sie z.B. für die Wolkenbildung von großer Bedeutung ist. Diese Prozesse sind bisher über dem offenen Ozean nur unzureichend quantifiziert. Zur Verifizierung der Hypothese sollen vertikale Austauschprozesse und Partikelquellen über den Azoren mit hoher räumlicher Auflösung untersucht werden. Dazu werden mit einer am TROPOS entwickelten hubschraubergetragenen Messplattform Partikelanzahlkonzentration und Vertikalwind mit einer zeitlichen Auflösung gemessen, die erstmalig eine direkte Bestimmung des vertikalen turbulenten Partikelflusses in verschiedenen Höhen ermöglicht. Die hierfür notwendigen schnellen Partikelmessungen von mind. 10 Hz werden durch den Einsatz eines schnellen Partikelzählers ermöglicht, welcher am TROPOS im Rahmen eines abgeschlossenen DFG-Projektes entwickelt und erfolgreich eingesetzt wurde. Durch dieses Gerät ist es ebenfalls möglich zu prüfen, ob auch in dieser Region regelmäßig die Neubildung von Aerosolpartikeln an Wolkenrändern stattfindet, wie es an Passatwolken auf Skalen von wenigen Dekametern beobachtet wurde. Weiterhin werden Anzahlgrößenverteilungen von Aerosolpartikeln sowie Absorptionskoeffizienten bei drei Wellenlängen bestimmt. Damit sind Rückschlüsse auf die Herkunft der untersuchten Aerosolpartikel möglich.Da die Hubschrauberflüge zeitlich begrenzt sind und damit nur Momentaufnahmen darstellen, werden zusätzlich kontinuierliche Messungen der Partikelanzahlgrößenverteilung an zwei bodengebundenen Stationen installiert. Eine dieser Stationen ist wenige Meter über Meeresniveau gelegen, die andere auf 2200 m und somit in der FT. Damit wird auf der Basis kontinuierlicher Messungen über einen Zeitraum von einem Monat die Untersuchung der Austauschprozesse zwischen MBL und FT ermöglicht. Mit Hilfe der gewonnen Datensätze können Einflüsse globaler Klimaänderungen auf das lokale Klima und mögliche Rückkopplungseffekte über den Einfluss von Aerosol auf Wolken in dieser Region besser eingeordnet werden.

Diffusion von Tritium

Wasserstoff zeigt im Vergleich zu anderen Elementen eine sehr hohe Beweglichkeit in Metallen. Allerdings werden bei der Bestimmung der Diffusionskoeffizienten oftmals erhebliche systematische Fehler beobachtet. So weichen die von verschiedenen Arbeitsgruppen fuer die Wanderung von Wasserstoff in Zirkon bestimmte Diffusionskoeffizienten im mittleren Temperaturbereich von 200 - 600 Grad C bis zu etwa zwei Groessenordnungen voneinander ab. Es schien moeglich, dass diese Abweichungen auf den Einfluss sauerstoffhaltiger Oberflaechenschichten zurueckzufuehren sind, da der Wasserstoff bei allen bisherigen Untersuchungen durch mindestens eine solche Schicht hindurchdiffundieren musste. Die Diffusionskoeffizienten fuer Tritium in diesen Oberflaechenschichten sind im Vergleich zur Beweglichkeit im Metall um mehr als sieben Groessenordnungen kleiner, so dass bereits duenne Schichten eine erhebliche Verzoegerung in der Diffusion bewirken koennen. Es wurde deshalb eine neue Methode entwickelt, bei der die Diffusion in den Oberflaechenschichten vermieden wird. Ausserdem wurde der Einfluss der Sauerstoff-Konzentration auf die Beweglichkeit von Tritium in Zircaloy bestimmt. Diese Arbeiten, welche auch fuer die Kernbrennstoff-Wiederaufbereitung von erheblicher Bedeutung sind, werden fortgesetzt. Im Vordergrund stehen dabei die Untersuchungen ueber den Einfluss von Fremdstoffen und Strahlenschaeden auf die Tritium-Diffusion in Zirkon und Zirkon-Legierungen.

Gasblasen in aquatischen Ökosystemen: Entstehung, Dynamik und Bedeutung für Stofftransport

Gasblasen mit Grössen zwischen einigen Mikrometern bis Zentimetern sind allgegenwärtig in aquatischen Ökosystemen. Sie beeinflussen nicht nur die physikalischen Eigenschaften des Wassers, sie ermöglichen auch einen wichtigen Transportweg mit hoher Relevanz für globale biogeochemische Kreisläufe und das Klima. An der Luft-Wasser-Grenzfläche beschleunigen Blasen den Gasaustausch und beeinflussen damit den globalen Kohlenstoffkreislauf. Aus Sedimenten freigesetzte Blasen (Ebullition) sind ein wichtiger Transportweg für Methan in die Atmosphäre. Darüber hinaus transportieren Blasen nicht nur Gase, sondern auch Partikel, gelöste Stoffe und Bakterien auf ihren Oberflächen. Dieses Material, darunter Kohlenstoff, Nährstoffe und Schadstoffe, stammt aus den Sedimenten oder wurde während des Aufstiegs aus der Wassersäule entfernt. Trotz dieser potenziellen Bedeutung ist wenig über Gasblasen und ihre Eigenschaften in Süßwasserökosystemen bekannt, bestehendes Wissen basiert hauptsächlich auf Beobachtungen in marinen Systemen. In diesem Projekt untersuchen wir diejenigen Prozesse, welche das Vorkommen und die Eigenschaften von Gasblasen in Süßwasserökosystemen kontrollieren, sowie die Rolle der Blasen für den Transport von Gasen, gelösten Stoffen und Partikeln. Wir unterscheiden zwischen Luftblasen die an der Wasseroberfläche eingetragen werden, Blasen die durch Gasübersättigung in der pelagischen Zone entstehen, sowie Blasen die in Sedimenten gebildet werden. Wir gehen davon aus, dass diese drei unterschiedlichen Arten von Blasen unterschiedliche Eigenschaften haben. Auf der Grundlage von Feldmessungen und Laborexperimenten untersuchen wir die Entstehung, Alterung und das Schicksal dieser drei Arten von Blasen und der von ihnen transportierten Substanzen in unterschiedlichen aquatischen Systemen. Die Beobachtungen und Ergebnisse werden mit prozessbasierten Modellen verknüpft um einen theoretisch fundierten und empirisch validierten Rahmen für die Bewertung der Relevanz von Stofftransport durch Gasblasen in aquatischen Ökosystemen zu entwickeln. Dies erlaubt die Übertragung der Ergebnisse dieses Projekts auf eine Vielzahl von Fragestellungen in unterschiedlichen Bereichen der aquatischen Forschung, der Gewässerüberwachung und des Gewässermanagements.

1 2 3 4 5125 126 127