API src

Found 1367 results.

Related terms

INSPIRE: Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers (InSpEE-DS) (WMS)

Which salt formations are suitable for storing hydrogen or compressed air? In the InSpEE-DS research project, scientists developed requirements and criteria for the assessment of suitable sites even if their exploration is still at an early stage and there is little knowledge of the salinaries’ structures. Scientists at DEEP.KBB GmbH in Hanover, worked together with their project partners at BGR and the Leibniz University Hanover, Institute for Geotechnics, to develop the planning basis for the site selection and for the construction of storage caverns in flat layered salt and multiple or double saliniferous formations. Such caverns could store renewable energy in the form of hydrogen or compressed air. While the previous project InSpEE was limited to salt formations of great thickness in Northern Germany, salt horizons of different ages have now been examined all over Germany. To estimate the potential, depth contour maps of the top and the base as well as thickness maps of the respective stratigraphic units were developed. Due to the present INSPIRE geological data model, it was necessary, in contrast to the original dataset, to classify the boundary lines of the potential storage areas in the Zechstein base and thickness layers, whereby the classification of these lines was taken from the top Zechstein layer. Consequently, the boundary element Depth criterion 2000 m (Teufe-Kriterium 2000 m) corresponds on each level to the 2000 m depth of Top Zechstein. However, the boundary of national borders and the boundary of the data basis could not be implemented in the data model and are therefore not included in the dataset. Information on compressed air and hydrogen storage potential is given for the identified areas and for the individual federal states. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE-DS (INSPIRE) is stored in 18 INSPIRE-compliant GML files: InSpEE_DS_GeologicUnit_Isopachs_Zechstein.gml contains the Zechstein isopachs. InSpEE_DS_GeologicUnit_Isobaths_Top_Zechstein.gml and InSpEE_DS_GeologicUnit_Isobaths_Basis_Zechstein.gml contain the isobaths of the top and basis of Zechstein. The three files InSpEE_DS_GeologicStructure_ThicknessMap_Zechstein, InSpEE_DS_GeologicStructure_Top_Zechstein and InSpEE_DS_GeologicStructure_Basis_Zechstein represent the faults of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Boundary_element_Potential_areas_Zechstein.gml contains the boundary elments of the potential areas at the top and the basis of Zechstein as well as of the Zechstein body. The three files InSpEE_DS_GeologicUnit_Uncertainty_areas_ThicknessMap_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Top_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Basis_Zechstein.gml represent the uncertainty areas of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Potentially_usable_storage_areas_Storage_potential_in_the_federal_states.gml comprises the areas with storage potential for renewable energy in the form of hydrogen and compressed air. The six files InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Malm.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Keuper.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Muschelkalk.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Roet.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Zechstein.gml and InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Rotliegend.gml represent the salt distribution of the respective stratigraphic unit. InSpEE_DS_GeologicUnit_General_salt_distribution.gml represents the general salt distribution in Germany. This geographic information is product of a BMWi-funded research project "InSpEE-DS" running from the year 2015 to 2019. The acronym stands for "Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers".

INSPIRE: Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers (InSpEE-DS)

Which salt formations are suitable for storing hydrogen or compressed air? In the InSpEE-DS research project, scientists developed requirements and criteria for the assessment of suitable sites even if their exploration is still at an early stage and there is little knowledge of the salinaries’ structures. Scientists at DEEP.KBB GmbH in Hanover, worked together with their project partners at BGR and the Leibniz University Hanover, Institute for Geotechnics, to develop the planning basis for the site selection and for the construction of storage caverns in flat layered salt and multiple or double saliniferous formations. Such caverns could store renewable energy in the form of hydrogen or compressed air. While the previous project InSpEE was limited to salt formations of great thickness in Northern Germany, salt horizons of different ages have now been examined all over Germany. To estimate the potential, depth contour maps of the top and the base as well as thickness maps of the respective stratigraphic units were developed. Due to the present INSPIRE geological data model, it was necessary, in contrast to the original dataset, to classify the boundary lines of the potential storage areas in the Zechstein base and thickness layers, whereby the classification of these lines was taken from the top Zechstein layer. Consequently, the boundary element Depth criterion 2000 m (Teufe-Kriterium 2000 m) corresponds on each level to the 2000 m depth of Top Zechstein. However, the boundary of national borders and the boundary of the data basis could not be implemented in the data model and are therefore not included in the dataset. Information on compressed air and hydrogen storage potential is given for the identified areas and for the individual federal states. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE-DS (INSPIRE) is stored in 18 INSPIRE-compliant GML files: InSpEE_DS_GeologicUnit_Isopachs_Zechstein.gml contains the Zechstein isopachs. InSpEE_DS_GeologicUnit_Isobaths_Top_Zechstein.gml and InSpEE_DS_GeologicUnit_Isobaths_Basis_Zechstein.gml contain the isobaths of the top and basis of Zechstein. The three files InSpEE_DS_GeologicStructure_ThicknessMap_Zechstein, InSpEE_DS_GeologicStructure_Top_Zechstein and InSpEE_DS_GeologicStructure_Basis_Zechstein represent the faults of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Boundary_element_Potential_areas_Zechstein.gml contains the boundary elments of the potential areas at the top and the basis of Zechstein as well as of the Zechstein body. The three files InSpEE_DS_GeologicUnit_Uncertainty_areas_ThicknessMap_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Top_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Basis_Zechstein.gml represent the uncertainty areas of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Potentially_usable_storage_areas_Storage_potential_in_the_federal_states.gml comprises the areas with storage potential for renewable energy in the form of hydrogen and compressed air. The six files InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Malm.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Keuper.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Muschelkalk.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Roet.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Zechstein.gml and InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Rotliegend.gml represent the salt distribution of the respective stratigraphic unit. InSpEE_DS_GeologicUnit_General_salt_distribution.gml represents the general salt distribution in Germany. This geographic information is product of a BMWi-funded research project "InSpEE-DS" running from the year 2015 to 2019. The acronym stands for "Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers".

INSPIRE: Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers (InSpEE-DS)

Which salt formations are suitable for storing hydrogen or compressed air? In the InSpEE-DS research project, scientists developed requirements and criteria for the assessment of suitable sites even if their exploration is still at an early stage and there is little knowledge of the salinaries’ structures. Scientists at DEEP.KBB GmbH in Hanover, worked together with their project partners at BGR and the Leibniz University Hanover, Institute for Geotechnics, to develop the planning basis for the site selection and for the construction of storage caverns in flat layered salt and multiple or double saliniferous formations. Such caverns could store renewable energy in the form of hydrogen or compressed air. While the previous project InSpEE was limited to salt formations of great thickness in Northern Germany, salt horizons of different ages have now been examined all over Germany. To estimate the potential, depth contour maps of the top and the base as well as thickness maps of the respective stratigraphic units were developed. Due to the present INSPIRE geological data model, it was necessary, in contrast to the original dataset, to classify the boundary lines of the potential storage areas in the Zechstein base and thickness layers, whereby the classification of these lines was taken from the top Zechstein layer. Consequently, the boundary element Depth criterion 2000 m (Teufe-Kriterium 2000 m) corresponds on each level to the 2000 m depth of Top Zechstein. However, the boundary of national borders and the boundary of the data basis could not be implemented in the data model and are therefore not included in the dataset. Information on compressed air and hydrogen storage potential is given for the identified areas and for the individual federal states. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE-DS (INSPIRE) is stored in 18 INSPIRE-compliant GML files: InSpEE_DS_GeologicUnit_Isopachs_Zechstein.gml contains the Zechstein isopachs. InSpEE_DS_GeologicUnit_Isobaths_Top_Zechstein.gml and InSpEE_DS_GeologicUnit_Isobaths_Basis_Zechstein.gml contain the isobaths of the top and basis of Zechstein. The three files InSpEE_DS_GeologicStructure_ThicknessMap_Zechstein, InSpEE_DS_GeologicStructure_Top_Zechstein and InSpEE_DS_GeologicStructure_Basis_Zechstein represent the faults of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Boundary_element_Potential_areas_Zechstein.gml contains the boundary elments of the potential areas at the top and the basis of Zechstein as well as of the Zechstein body. The three files InSpEE_DS_GeologicUnit_Uncertainty_areas_ThicknessMap_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Top_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Basis_Zechstein.gml represent the uncertainty areas of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Potentially_usable_storage_areas_Storage_potential_in_the_federal_states.gml comprises the areas with storage potential for renewable energy in the form of hydrogen and compressed air. The six files InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Malm.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Keuper.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Muschelkalk.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Roet.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Zechstein.gml and InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Rotliegend.gml represent the salt distribution of the respective stratigraphic unit. InSpEE_DS_GeologicUnit_General_salt_distribution.gml represents the general salt distribution in Germany. This geographic information is product of a BMWi-funded research project "InSpEE-DS" running from the year 2015 to 2019. The acronym stands for "Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers".

Untersuchung der Herkunft des grenzüberschreitenden Feinstaubtransportes im Osten Deutschlands mit einem Chemie-Transportmodell

Überschreitungen von Luftqualitätsgrenzwerten von Feinstaub (PM10) im Osten Deutschlands treten meist an Tagen mit kalten und stabilen Wetterlagen im Winter auf und sind oft verbunden mit dem Transport von belasteter Luft aus Polen und anderen osteuropäischen Ländern. Im Rahmen dieses Projekts wurde eine Studie zur Quellzuordnung durchgeführt, um den Beitrag des grenzüberschreitenden Transports aus unterschiedlichen Emissionsquellen an der erhöhten Feinstaubkonzentration im Osten Deutschlands zu bewerten. Die Studie wurde mit dem Chemie-Transportmodell LOTOS-EUROS uns der darin implementierten Labelling-Technik zur Quellzuordnung durchgeführt. Die Ergebnisse wurden mit den PM10-Beobachtungen der PM-Ost-Kampagne und den Ergebnissen der darin durchgeführten messbasierten Quellzuordnung verglichen. Um die Qualität des Modells im Hinblick auf die Simulation von Episoden mit hoher PM Konzentration im Winter zu verbessern, wurden in der ersten Phase des Projekts Verbesserungen der Hausbrand- Emissionen und deren zeitlicher Variabilität vorgenommen. Zusätzlich wurde eine Optimierung der vom meteorologischen Modell COSMO simulierten Mischungsschichthöhen über Sensitivitätsläufe angestrebt. Die Ergebnisse zeigen, dass der Hausbrand und die Landwirtschaft die dominierenden Faktoren für erhöhte PM10-Konzentrationen im Osten Deutschlands bei kalten und stabilen Wetterbedingungen sind. Für städtische Stationen ist auch der Verkehrsbeitrag von Bedeutung. Im Durchschnitt stammt der größte Feinstaubbeitrag aus Deutschland. Bei höheren PM-Konzentrationen allerdings übersteigt der grenzüberschreitende Beitrag Polens und anderer osteuropäischer Länder denjenigen Deutschlands selbst. Die dominierenden Quellen dieses über große Distanzen transportierten Feinstaubs sind Hausbrand und Landwirtschaft. Der Vergleich der modellbasierten Quellzuordnung aus den LOTOS-EUROS-Ergebnissen mit den auf Messungen basierenden Ergebnissen aus dem PM-Ost-Projekt zeigt eine gute Übereinstimmung für Ammoniumnitrat- und Verbrennungsquellen. Für den verkehrsbedingten Beitrag sind größere Unterschiede zu erkennen, die auf die zeitliche Variabilität der Emissionen, die Auflösung des LOTOS-EUROS-Modells, die Unterschätzung der Aufwirbelung und den Reifen- und Bremsenabrieb zurückzuführen sind. Die PM10 Gesamtkonzentrationen aus dem LOTOS-EUROS Mo-dell sind in der Regel niedriger als die gemessenen Werte, was auf nicht erfasste Quellen oder Pro-zesse im Modell zurückgeführt werden kann. Die Korrelation des nicht modellierten PM10 Anteils mit den PMF-Quellen legt nahe, dass neben einer Unterschätzung der vertikalen Mischung, der Ausschluss der SOA-Bildung in LOTOS-EUROS und eine Unterschätzung der Sulfat-Bildung wahrscheinliche Gründe für die PM10-Unterschätzung sind. Quelle: Forschungsbericht

BESTMAP EU 2020 High resolution climate data for Europe

High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present downscaled climate data for the CORDEX EUR11 domain at a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperature lapse rates. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height. The resulting data consist of a daily temperature and precipitation timeseries. The data is distributed under a: Creative Commons: Attribution 4.0 International (CC BY 4.0) license.

Bioklima 2005

Deutscher Wetterdienst DWD 1996: Klimakarten für das Land Berlin, Teil 1: Bioklima Berlin, Gutachten im Auftrag der Senatsverwaltung für Stadtentwicklung, Umweltschutz und Technologie, unveröffentlicht. Groß, G. 1989: Numerical simulation of the nocturnal flow systems in the Freiburg area for different topographies, in: Beitr. Phys. Atmosph.,H 62, S. 57-72. Groß, G. 1993: Numerical simulation of canopy flows, Springer Verlag Berlin. Groß, G. 2002: The exploration of boundary layer phenomena using a nonhydrostatic mesoscale model, in: Meteor.Z.schr. Vol. 11 Nr.5, S.701-710. Mosimann, T. et al. 1999: Karten der klima- und immissionsökologischen Funktionen – Instrumente zur prozessorientierten Betrachtung von Klima und Luft in der Umweltplanung, in: Naturschutz und Landschaftsplanung 31,(4),S. 101-108, Stuttgart. Moriske & Turowski 2002: Handbuch für Bioklima und Lufthygiene, 8. Ergänzungslieferung, Ecomed-Verlag, Landsberg. Richter & Röckle (iMA Immissionen, Meteorologie Akustik) o.J.: Das numerische Simulationsmodell FITNAH, digitale PDF-Datei, Freiburg. Internet: www.staedtebauliche-klimafibel.de/pdf/FITNAH_Kurzuebersicht.pdf (Zugriff am 11.05.2009) Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz (SenGesUmV) 2008: Emissionskataster Kraftfahrzeug-Verkehr 2005, unveröffentlicht. VDI (Verein Deutscher Ingenieure) 1994: Richtlinie VDI 3787, Blatt1, Klima- und Lufthygienekarten für Städte und Regionen, Düsseldorf. Internet: www.vdi.de/ (Zugriff am 11.05.2009) VDI (Verein Deutscher Ingenieure) 2008: Richtlinie VDI 3785, Blatt1, Methodik und Ergebnisdarstellung von Untersuchungen zum planungsrelevanten Stadtklima, Düsseldorf. Internet: www.vdi.de/ (Zugriff am 11.05.2009) Vogt, J. 2002a: Bericht über orientierende Untersuchungen zur lokalklimatischen Funktion der Flächen des Gleisdreieckes in Berlin, Textteil, Voruntersuchung im Auftrag der Vivico Management GmbH, unveröffentlicht, Berlin. Vogt, J. 2002b: Bericht über orientierende Untersuchungen zur lokalklimatischen Funktion der Flächen des Gleisdreieckes in Berlin, Abbildungsteil, Voruntersuchung im Auftrag der Vivico Management GmbH, unveröffentlicht, Berlin. Websites UTCI Universal Thermal Climate Index: Website der International Society of Biometeorology, Commission 6, Development of a “Universal Thermal Climate Index” (UTCI). Internet: www.utci.org/index.php (Zugriff am 19.06.2009) Digitale Karten SenSUT (Senatsverwaltung für Stadtentwicklung, Umweltschutz und Technologie Berlin) (Hrsg.) 1998b: Umweltatlas Berlin, Ausgabe 1998, Karte 04.09 Bioklima bei Tag und Nacht, 1:75 000, Berlin. SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2001a: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2001, Karte 04.02 Langjährige Temperaturverteilung 1961 – 1990, 1:50 000, Berlin. Internet: /umweltatlas/klima/entwicklung-von-klimaparametern/1961-1990/karten/ SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2001b: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2001, Karte 04.04 Temperatur in mäßig austauscharmen Strahlungsnächten, 1:125 000, Berlin. Internet: /umweltatlas/klima/temperatur-und-feuchteverhaeltnisse/2000/karten/index.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2001c: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2001, Karte 04.05 Klimazonen, 1:50 000, Berlin. Internet: /umweltatlas/klima/stadtklimatische-zonen/2000/karten/artikel.965158.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2001d: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2001, Karte 04.06 Oberflächentemperaturen bei Tag und Nacht, 1:85 000, Berlin. Internet: /umweltatlas/klima/oberflaechentemperatur/2000/karten/index.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2001e: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2001, Karte 04.07 Klimafunktionen, 1:50 000, Berlin. Internet: /umweltatlas/klima/klimaanalyse/2000/karten/artikel.931726.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2007: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2007, Karte 01.02 Versiegelung, 1:50 000, Berlin. Internet: /umweltatlas/boden/versiegelung/2005/karten/artikel.956223.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2008a: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2008, Karte 06.01 Reale Nutzung der bebauten Flächen und 06.02 Grün- und Freiflächenbestand, 1:50 000, Berlin. Internet: /umweltatlas/nutzung/flaechennutzung/2007/karten/index.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2008b: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2008, Karte 06.07 Stadtstruktur, 1:50 000, Berlin. Internet: /umweltatlas/nutzung/stadtstruktur/2006/karten/index.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2009a: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2009, Karte 04.10 Klimamodell Berlin – Analysekarten, 1:50 000, Berlin. Internet: /umweltatlas/klima/klimaanalyse/2005/karten/index.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2009b: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2009, Karte 04.11 Klimamodell Berlin – Bewertungskarten, 1:50 000, Berlin. Internet: /umweltatlas/klima/klimabewertung/2005/karten/index.php

Teilvorhaben 1.1.1.2, 1.1.1.8, 1.1.2.6, 1.1.2.7

Das Projekt "Teilvorhaben 1.1.1.2, 1.1.1.8, 1.1.2.6, 1.1.2.7" wird vom Umweltbundesamt gefördert und von Technische Hochschule Aachen, Institut für Strahlantriebe und Turboarbeitsmaschinen durchgeführt. Ziel des beantragten Verbundvorhabens (Einzelvorhaben 1.1.1.2, 1.1.1.8, 1.1.2.6 und 1.1.2.7) ist die verbesserte Berechnung der reibungsbehafteten Stroemung in mehrstufigen Turbomaschinen. Die Einzelvorhaben umfassen die Loesung folgender Aufgaben: 1.1.1.2: Verbesserung von Profil- und Seitenwandgrenzschichten im mehrstufigen Verdichter; Auswertung und Korrelation in Verbindung mit Daten aus Vorhaben 1.1.1.1./1.1.1.8: Quasi-3d-Berechnung der Stroemung im mehrstufigen Verdichter unter Verwendung der Ergebnisse aus 1.1.1.2 und 1.1.2.6. 1.1.2.6: Erstellung eines elliptischen 3d-Navier-Stokes-Verfahrens zur Einzelgitterberechnung und Einbeziehung abgeloester Stroemungen. 1.1.2.7: Erweiterung eines Quasi-3d-through-Flow-Verfahrens fuer die Berechnung der Stroemung in einer mehrstufigen Axialturbine unter Verwendung semi-elliptischer Navier-Stokes-Loesungen in den Einzelgittern.

Teil 2

Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von iii Institut für Interdisziplinäre Innovationen e.V. an der Technischen Hochschule Nürnberg durchgeführt. In den 70iger Jahren wurde damit begonnen zur Reduzierung des Energieverbrauchs Gebäude mit Wärmedämmverbundsystemen (WDVS) an ihren Fassaden auszustatten. Die WDVS der ersten Generation haben in den kommenden Jahren ihre Nutzungsdauer erreicht und gelangen in den Abfallstrom. Die Menge der zu entsorgenden WDVS wird in den folgenden Jahren deutlich zunehmen. Das Ziel des beantragten Forschungsvorhabens ist es Ansätze und Lösungsstrategien für die Aufbereitung und die stoffliche Verwertung von komplexen Wärmedämmverbundsystemen (WDVS) zu entwickeln. Wärmedämmverbundsysteme (WDVS) sind sehr komplexe Verbundbauteile die aus mehreren Komponenten aufgebaut und in der Regel stoffschlüssig verbunden sind. Ziel dieses Projektes ist es, die Materialkombinationen zu charakterisieren und insbesondere die Grenzflächen und deren Verbindungselemente auf ihre Strukturen zu untersuchen. Zum aktuellen Zeitpunkt sind keine Technologien zum Recycling von WDV-Systemen vorhanden. Dies betrifft sowohl das Recycling der ersten Generation der Wärmedämmverbundsysteme als auch insbesondere die Aufbereitung der moderneren Materialverbünde. Somit werden in dem beantragten Vorhaben nach Ermittlung und Auswertung der materialspezifischen Kenntnisse verfahrenstechnische Möglichkeiten zur Aufbereitung und zum stoffspezifischen Recycling der Wärmedämmverbundsysteme erarbeitet und zum Abschluss eine erste Variante einer Recyclinganlage vorgestellt.

Teil 3

Das Projekt "Teil 3" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Chemische Technologie durchgeführt. In den 70iger Jahren wurde damit begonnen zur Reduzierung des Energieverbrauchs Gebäude mit Wärmedämmverbundsystemen (WDVS) an ihren Fassaden auszustatten. Die WDVS der ersten Generation haben in den kommenden Jahren ihre Nutzungsdauer erreicht und gelangen in den Abfallstrom. Die Menge der zu entsorgenden WDVS wird in den folgenden Jahren deutlich zunehmen. Das Ziel des beantragten Forschungsvorhabens ist es Ansätze und Lösungsstrategien für die Aufbereitung und die stoffliche Verwertung von komplexen Wärmedämmverbundsystemen (WDVS) zu entwickeln. Wärmedämmverbundsysteme (WDVS) sind sehr komplexe Verbundbauteile die aus mehreren Komponenten aufgebaut und in der Regel stoffschlüssig verbunden sind. Ziel dieses Projektes ist es, die Materialkombinationen zu charakterisieren und insbesondere die Grenzflächen und deren Verbindungselemente auf ihre Strukturen zu untersuchen. Zum aktuellen Zeitpunkt sind keine Technologien zum Recycling von WDV-Systemen vorhanden. Dies betrifft sowohl das Recycling der ersten Generation der Wärmedämmverbundsysteme als auch insbesondere die Aufbereitung der moderneren Materialverbünde. Somit werden in dem beantragten Vorhaben nach Ermittlung und Auswertung der materialspezifischen Kenntnisse verfahrenstechnische Möglichkeiten zur Aufbereitung und zum stoffspezifischen Recycling der Wärmedämmverbundsysteme erarbeitet und zum Abschluss eine erste Variante einer Recyclinganlage vorgestellt.

Teil 1

Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Technische Hochschule Nürnberg, Mechanische Verfahrenstechnik,Partikeltechnologie durchgeführt. In den 70iger Jahren wurde damit begonnen zur Reduzierung des Energieverbrauchs Gebäude mit Wärmedämmverbundsystemen (WDVS) an ihren Fassaden auszustatten. Die WDVS der ersten Generation haben in den kommenden Jahren ihre Nutzungsdauer erreicht und gelangen in den Abfallstrom. Die Menge der zu entsorgenden WDVS wird in den folgenden Jahren deutlich zunehmen. Das Ziel des beantragten Forschungsvorhabens ist es Ansätze und Lösungsstrategien für die Aufbereitung und die stoffliche Verwertung von komplexen Wärmedämmverbundsystemen (WDVS) zu entwickeln. Wärmedämmverbundsysteme (WDVS) sind sehr komplexe Verbundbauteile die aus mehreren Komponenten aufgebaut und in der Regel stoffschlüssig verbunden sind. Ziel dieses Projektes ist es, die Materialkombinationen zu charakterisieren und insbesondere die Grenzflächen und deren Verbindungselemente auf ihre Strukturen zu untersuchen. Zum aktuellen Zeitpunkt sind keine Technologien zum Recycling von WDV-Systemen vorhanden. Dies betrifft sowohl das Recycling der ersten Generation der Wärmedämmverbundsysteme als auch insbesondere die Aufbereitung der moderneren Materialverbünde. Somit werden in dem beantragten Vorhaben nach Ermittlung und Auswertung der materialspezifischen Kenntnisse verfahrenstechnische Möglichkeiten zur Aufbereitung und zum stoffspezifischen Recycling der Wärmedämmverbundsysteme erarbeitet und zum Abschluss eine erste Variante einer Recyclinganlage vorgestellt.

1 2 3 4 5135 136 137