Das Projekt "Biocatalytic solar fuels for sustainable mobility in Europe (Photofuel)" wird vom Umweltbundesamt gefördert und von Volkswagen AG durchgeführt. Photofuel studies and advances the biocatalytic production of alternative liquid transportation fuels, which require only sunlight, CO2 and water. Microbial cells directly excrete hydrocarbon and long chain alcohol fuel compounds to the medium from which they are separated, without the need to harvest biomass. This significantly improves the costs and energy balances as only a minimum of nutrients is required for self-replication of the biocatalyst, whilst cell harvesting, drying and lipid extraction is omitted. Such minimum-input systems are compatible with operation on degraded or desert land which avoids the pitfalls of most of the currently available biofuel technologies. The products are drop-in fuels that fully or partially replace their fossil counterparts without the need for new infrastructure. To set a benchmark for alternative solar fuels, three research groups will collaborate in the advancement of the biocatalysts from TRL 3. The best biocatalytic system(s) will be up-scaled and operated outdoors in photobioreactors modified for direct fuel separation at a scale of several cubic meters (TRL 4-5). The identification of optimal future fuel blends with a fossil fuel base and Photofuel biofuels as additives, as well as the analysis of performance and emissions in car or truck engines, will be evaluated by the oil- and automotive-industry partners. The entire pathway will be assessed for environmental and economic performance as well as social acceptance of large scale production in rural communities and by the consumer. All results will be combined to a business development plan, which clearly identifies the opportunities but also the challenges prior to an economic fuel production in compliance to the EC Fuel Quality Directive.
Das Projekt "SUNlight-to-LIQUID: Integrated solar-thermochemical synthesis of liquid hydrocarbon fuels (SUN-to-LIQUID)" wird vom Umweltbundesamt gefördert und von Bauhaus Luftfahrt e.V. durchgeführt. Liquid hydrocarbon fuels are ideal energy carriers for the transportation sector due to their exceptionally high energy density and most convenient handling, without requiring changes in the existing global infrastructure. Currently, virtually all renewable hydrocarbon fuels originate from biomass. Their feasibility to meet the global fuel demand and their environmental impact are controversial. In contrast, SUN-to-LIQUID has the potential to cover future fuel consumption as it establishes a radically different non-biomass non-fossil path to synthesize renewable liquid hydrocarbon fuels from abundant feedstocks of H2O, CO2 and solar energy. Concentrated solar radiation drives a thermochemical redox cycle, which inherently operates at high temperatures and utilizes the full solar spectrum. Thereby, it provides a thermodynamically favourable path to solar fuel production with high energy conversion efficiency and, consequently, economic competitiveness. Recently, the first-ever production of solar jet fuel has been experimentally demonstrated at laboratory scale using a solar reactor containing a ceria-based reticulated porous structure undergoing the redox cyclic process.
SUN-to-LIQUID aims at advancing this solar fuel technology from the laboratory to the next field phase: expected key innovations include an advanced high-flux ultra-modular solar heliostat field, a 50 kW solar reactor, and optimized redox materials to produce synthesis gas that is subsequently processed to liquid hydrocarbon fuels. The complete integrated fuel production chain will be experimentally validated at a pre-commercial scale and with record high energy conversion efficiency.
The ambition of SUN-to-LIQUID is to advance solar fuels well beyond the state of the art and to guide the further scale-up towards a reliable basis for competitive industrial exploitation. Large-scale solar fuel production is expected to have a major impact on a sustainable future transportation sector.