Das Projekt "Conversion of Low Grade Heat to Power through closed loop Reverse Electro-Dialysis (RED-Heat-to-Power)" wird vom Umweltbundesamt gefördert und von WIP, Wirtschaft und Infrastruktur GmbH & Co Planungs-KG durchgeführt. The concept is based on the generation of electricity from salinity gradient using Reverse Electrodialysis with artificial saline solutions operating in a closed-loop. The original salinity gradient is regenerated by a separation step that uses heat at 40 - 100 C.
The regenerated solutions can be stored at very low costs and the stack can react within seconds, providing flexibility to the power system. It is a quiet technology operating under normal pressures and temperatures imposing no risks. The industrial partners ensures the MRL will be kept aligned with the advances in TRL.
The overall objective is to prove this revolutionary concept, develop the necessary materials, components and know-how for bringing it to the level of a lab prototype generating electricity from low-grade heat at higher efficiencies and lower costs than ever achieved to date. Specific objectives:
Select the most suitable technologies for the regeneration process and the combinations of salts and solvents that can maximise the system performance.
Create new knowledge for developing: membranes for the selected solutions; membrane manufacturing concepts that can be scaled-up for high volume and low-cost production; efficient stacks suitable for this application; energy efficient regeneration processes.
Implement and validate a process simulation tool to analyse the performance under different configurations and operating conditions.
Evaluate and improve the performance of the overall system through tests on a lab-prototype, identifying potential up-scaling and operational issues (System efficiencies reaching 15% and power densities of 25 W/m2 of cell pair).
Define a development roadmap, taking into account environmental, social and regulatory issues, leading to levelised cost of electricity below 0.03 Euro/kWh by 2025 to 2030.
Involve target group representatives to the Advisory Board and communicate the key results in order to initiate a dialogue and facilitate the engagement of key actors.
Das Projekt "Smart Integration of Energy Storages in Local Multi Energy Systems for maximising the Share of Renewables in Europe's Energy Mix (SmILES)" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Lehrstuhl für Energiewirtschaft durchgeführt. SmILES zooms in simulation and optimisation of smart storage in local energy systems for increasing the understanding and transparency of innovative multi-energy projects. Setting up a shared data and information platform and effective dissemination of related results will contribute to competence building.
The objective is to obtain fundamental knowledge about linking and optimising heterogeneous energy carriers and systems including storage and renewable energy technologies from local to national level. Furthermore guidelines for modelling and optimising such systems on European level are developed. These guidelines are derived from knowledge of different energy system configurations (SC), which combine heat and electrical power with storage. The SCs are selected to favour a high relevance for replication throughout Europe including e.g. urban quarters, rural township or industrial environment.
This requires the development of a harmonised rich format describing hybrid energy systems and study cases for various scenarios. Different technologies are used to exchange models, allow cross-checks and validate results of simulation and optimisation. A catalogue of best practices of modelling, operating and integrating multi-energy systems is compiled and intended to serve as guideline for stakeholders. Key success factors and barriers from a socio-technical point of view are identified aiming at the reduction of technological gaps and successful implementation of best practices in a socio-economic context. Thus, SmILES will proof the benefit of a hybrid combined heat- and electrical power systems with storage capabilities and deploy the added value of storage integration in future energy systems.
Supplementing the research activities, a long-lasting framework across EERA JP borders is set up by the consortium for extending storage integration technologies by linking other EERA members, stakeholders, energy supplier and industry.