API src

Found 3 results.

Storage energy UNit for Smart and Efficient operation on Tarmac (SUNSET)

Das Projekt "Storage energy UNit for Smart and Efficient operation on Tarmac (SUNSET)" wird vom Umweltbundesamt gefördert und von Centrum Adeneo durchgeführt. The steady growth of global air traffic passenger demand requires the air transport industry to work even harder to improve the associated levels of safety, efficiency, and environmental performances of aircrafts. As such, the transient to more electrified aircraft systems is strongly encouraged throughout the complete aircraft operational behaviour, including on-ground operations. Indeed, on-ground operations are still mostly engine based, the main engines designed for flight phases at high power levels are thus used as well as power source to move the aircraft on ground. This induces major economic and environmental losses: currently, fuel consumption from taxi operations is estimated to cost 6,4billion€ and to reach 18M metric tons of CO2 emission per year. To reduce unnecessary fuel burn and their related emissions, a technological alternative has already been identified: Electric Taxiing System (e-Taxiing). However, some technical bottlenecks, as the one dealing with the solution storage energy capacity, have still to be overcome before enabling those system to be used by all existing and future commercial aircrafts. SUNSET will target this specific technical challenge proposing a high performances energy storage module development connected to the future e-Taxiing system. The SUNSET technology will also address the related challenge of mass reduction by providing a high-density energy recovery capability (30Wh/kg) to perform aircraft electrical decelerations while also minimizing cooling and weight. SUNSET partners, Centum Adeneo and Ampère Laboratory (UCBL) are part of the European recognised air industry value chain and will as such be involved in both development of the SUNSET solution with their Topic Manager support for its integration in the e-Taxiing system. SUNSET project will therefore contribute to bring out an innovative solution enabling a winning differentiator for European aircraft manufacturers.

Development of Electromechanical Actuators and Electronic control Units for Flight Control Systems (EMA4FLIGHT)

Das Projekt "Development of Electromechanical Actuators and Electronic control Units for Flight Control Systems (EMA4FLIGHT)" wird vom Umweltbundesamt gefördert und von Fundacion Tecnalia Research & Innovation (Tecnalia) durchgeführt. Nowadays, there is a trend towards the More-Electric Aircraft (MEA) concept. MEA would replace the secondary aircraft power systems (electric, hydraulic and pneumatic) with a globally optimized electrical system. However, the architecture of the electric system must be carefully selected to optimize the whole aircraft. Actual research in MEA technology is focused on new advances in power electronics, fault-tolerant electric machines, digital control, electro-mechanical actuators and communications. Modern technologies involved in MEA are being taken in two different paths: i) elimination of bleed-air systems and hydraulic engines with further improvements in electrical power generation capability. It requires changes in both electrical generation and distribution network, and ii) replacement of hydraulics actuators with electro-mechanical actuators with the same level of safety and reliability, reducing weight, fuel usage, maintenance and production costs. Several studies have been recently carried out emphasizing the interest on the replacement of the traditional electro-hydrostatic actuators used in flight control surfaces by electro-mechanical actuators (EMAs). The reasons for such a choice are: weight and maintenance reduction, elimination of pipes vibration problems, increase of reliability, increase of the system performance and pressure losses thanks to the absence of valves. The EMA4FLIGHT project will design, manufacture and tune innovative electro-mechanical actuator sub-systems for aileron/spoiler and winglet/flap-tab flight control surfaces, with clearance for flight. The designed sub-systems will be improved by electric motor and ballscrew innovative architecture, advanced control strategies and smart safety, diagnostic and maintenance functions.

MULTIivariable Environmental Control System (MULTIECS)

Das Projekt "MULTIivariable Environmental Control System (MULTIECS)" wird vom Umweltbundesamt gefördert und von Universidad Politecnica Barcelona durchgeführt. The goal of this project is the development of a Multivariable Control System (MCS) by means of extended linearization techniques, based on a control-oriented thermodynamical modelling for the electric air conditioning pack. The focus will be on developing real-time capable low-order models. In a second step, these models will be calibrated using test results from the Topic Manager. The subsequent MCS design will be performed in the Matlab/Simulink environment, in order to guarantee compatibility with the Topic Manager certification standards and processes. After successful simulation of the MCS implementation in Matlab/Simulink, an experimental validation of the MCS is aimed at the Topic Manager's facilities. The different objectives of the MULTIECS project are itemized as follows: - Derivation of symbolic control-oriented models for the electrical air-conditioning. - Efficient parameter identification of the nonlinear dynamic models to used in the MCS design aiming a small number of necessary test cases. - Development of the multivariable optimal control structure in the Matlab/Simulink taing advantage of the extended linearisation techniques, especially the SDRE design. - Assessment by simulations and experimental validation of the multivariable control system.

1