The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational H2O total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV/VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total H2O column is retrieved from GOME solar backscattered measurements in the red wavelength region (614-683.2 nm), using the Differential Optical Absorption Spectroscopy (DOAS) method. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
Solvay in Bernburg (Salzlandkreis) setzt stark auf betrieblichen Umweltschutz – davon konnte sich Staatssekretär Thomas Wünsch am heutigen Mittwoch vor Ort überzeugen. Anlässlich des 25-jährigen Gründungsjubiläums der „Umweltallianz Sachsen-Anhalt“ besuchte er das Werk, das zur weltweit tätigen belgischen Solvay-Gruppe gehört. In Bernburg produzieren rund 400 Beschäftigte die wichtigen Chemikalien Soda, Natriumbicarbonat und Wasserstoffperoxid, die u. a. für die Herstellung von Glas, Waschmitteln, Lebensmitteln oder Computerchips verwendet werden und damit für viele Bereiche des täglichen Lebens unverzichtbar sind. Das Bernburger Solvay-Werk ist seit April 2000 Mitglied der Umweltallianz und engagiert sich seit nunmehr fast einem Vierteljahrhundert in der freiwilligen Umwelt-Partnerschaft von Landesregierung und Wirtschaft. Das Unternehmen betreibt seit langem ein Umweltmanagement-System und hat den Verbrauch von sowohl Prozess- als auch Kühlwasser und Ammoniak sowie den CO2-Ausstoß in den vergangenen Jahren stetig reduziert. Ganz aktuell beabsichtigt das Unternehmen mit einem Partner, auf rekultivierten Kalkteichen eine Photovoltaikanlage mit einer Leistung von bis zu 70 Megawatt-Peak zu errichten. Diese Anlage soll Strom für einen geplanten 30-Megawatt-Elektrolyseur liefern. Mit dem dort produzierten grünen Wasserstoff will Solvay klimafreundliches Wasserstoffperoxid herstellen, das u. a. für hochmoderne Computerchips gebraucht wird. Wünsch zeigte sich beeindruckt vom bisherigen Engagement wie auch von den Zukunftsplänen: „Für Solvay als Chemiekonzern sind die Herausforderungen beim Umwelt- und Klimaschutz natürlich besonders groß. Umso wichtiger ist es, dass das Bernburger Werk bei diesen wichtigen Themen auf dem Weg zur Klimaneutralität auch künftig vorangehen will. Ich freue mich, dass sich Solvay als Botschafter für nachhaltiges und umweltschonendes Wirtschaften in Sachsen-Anhalt aktiv in der Umweltallianz engagiert.“ Hintergrund: Die Umweltallianz gibt es seit Juni 1999; sie feiert 2024 ihr 25-jähriges Bestehen. Höhepunkt des Jubiläumsjahres war die Festveranstaltung am 13. November 2024 in Magdeburg, bei der Umweltminister Prof. Dr. Armin Willingmann auch die Preise der Umweltallianz verliehen hat. Die Partnerschaft zwischen Land und Wirtschaft soll die umweltgerechte ökonomische Entwicklung in Sachsen-Anhalt befördern. Voraussetzung für die Mitgliedschaft ist die Umsetzung von mindestens einer freiwilligen Umweltschutzleistung, die über gesetzliche Mindestanforderungen hinaus geht. Aktuell hat das Bündnis gut 220 Partner. Die Bandbreite der teilnehmenden Unternehmen reicht dabei von der Metallbranche über die Abfall- und Ernährungswirtschaft bis zum Handwerk. Aktuelle Informationen zu interessanten Themen aus Wissenschaft, Energie, Klimaschutz und Umwelt gibt es auch auf den Social-Media-Kanälen des Ministeriums bei Facebook, Instagram, LinkedIn, Mastodon und X (ehemals Twitter). Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X
Die Staub & Co. Silbermann GmbH hat beim Landratsamt Augsburg die immissionsschutz-rechtliche Genehmigung gemäß § 16 BImSchG für die wesentliche Änderung der Anlage zur Lagerung von Wasserstoffperoxid und Mischungen (Lagertanks Nrn. 992, 26 und 28 in Gebäude 01 und 02) durch Kennzeichnungsänderung von Wasserstoffperoxid nach EU-Biozid-Verordnung) auf dem Betriebsgrundstück Flur-Nr. 555 der Gemarkung Gablingen beantragt. Die Errichtung und der Betrieb einer Anlage, die der Lagerung von 10 t bis hin zu 200 t von im Anhang 2 der 4. BImSchV genannten Stoffen dient (hier Wasserstoffperoxid, brandfördernd), ist der Nr. 9.3.3 der Anlage 1 zum UVPG zuzuordnen und in Spalte 2 mit „S“ gekennzeichnet. Für das geplante Vorhaben war deshalb im Rahmen des immissionsschutzrechtlichen Genehmigungsverfahrens vom Landratsamt Augsburg eine standortbezogene Vorprüfung zur Feststellung der UVP-Pflicht entsprechend den §§ 9 Abs. 2 und 4 i. V. m. § 7 Abs. 2 UVPG durchzuführen.
Die Firma Almirall Hermal GmbH, Scholtzstraße 3, 21465 Reinbek plant die Errichtung und den Betrieb eines Lagertanks für Wasserstoffperoxid mit einer Kapazität von 36 Tonnen in 21465 Reinbek, Scholtzstraße 3, Gemarkung Reinbek, Flur 3, Flurstück 957.
Hinweise zu Abschnitt 6.8.4 Buchstabe b Sondervorschrift TE 11 ADR / RID Dichtheit der Verschlusseinrichtungen beim Umkippen der Tanks für wässerige Lösungen von Wasserstoffperoxid und für Wasserstoffperoxid (ehemals TRT 511) Die Anforderungen an die Dichtheit der Ausrüstungsteile, insbesondere der Verschlusseinrichtungen ist erfüllt, wenn eine Leckrate von 10 Litern pro Stunde nur unter der alleinigen Wirkung des hydrostatischen Druckes von Wasser (maximal 0,3 Bar Überdruck) infolge des Umkippens nicht überschritten wird. Darüber hinaus ist sicherzustellen, dass die Summe aus hydrostatischem Druck und dem sich durch Zersetzung des Wasserstoffperoxids aufbauenden zusätzlichen Druck den Prüfüberdruck des Tanks auch in umgekippter Lage nicht übersteigt. Federbelastete Ventile müssen beim Prüfüberdruck einen Flüssigkeitsaustritt bei umgekippten Tanks von mindestens 60 Litern pro Stunde bezogen auf 1 m³ Tankinhalt gewährleisten. Stand: 29. August 2023
Hinweise zu Abschnitt 6.8.4 Buchstabe a Sondervorschrift TC 2 ADR / RID Geeigneter Stahl/Zersetzung (ehemals TRT 501) Für die Fertigung von Tanks zum Transport von UN 2014, UN 2984 wässerigen Lösungen von Wasserstoffperoxid und für UN 2015 Wasserstoffperoxid wird empfohlen, bei der Verwendung von Stahl dessen Eignung durch Zustimmung der Bundesanstalt für Materialforschung und -prüfung, Berlin nachweisen zu lassen. Hierin ist für einen bestimmten Stahl und eine bestimmte Bau- und Verarbeitungsweise festzustellen, unter welchen Bedingungen keine gefährliche Zersetzung auftritt. Für wässerige Lösungen von Wasserstoffperoxid und für Wasserstoffperoxid sind nach den Ergebnissen der bisher durchgeführten Untersuchungen für nicht wärmeisolierte Behälter grundsätzlich nichtrostende austenitische Stähle geeignet. Dabei wird eine sachgerechte Passivierung und Verarbeitung in Hinblick auf die Verträglichkeit mit den Füllgütern entsprechend Nummer 4 vorausgesetzt. Eine Zersetzung von flüssigen Peroxiden gilt als ungefährlich, solange die durch sie erzeugte Wärme durch eine zulässige Temperaturdifferenz sicher abgeführt wird. Es hängt von den anzunehmenden Umgebungstemperaturen und der niedrigsten Temperatur ab, bei der in dem jeweiligen Stoff unter den Bedingungen der Wärmestaulagerungen eine exotherme Reaktion mit Selbstbeschleunigung abläuft (" self accelerating decomposition temperature ", " SADT "), welche Temperaturdifferenz noch zulässig ist. Die Zersetzungsrate hängt auch von der sachgerechten Verarbeitung, Beizung und Passivierung des Stahls ab. Sachgerechte Verarbeitung bedeutet unter anderem die Auswahl geeigneter Schweißverfahren und geeigneter Schweißzusatzwerkstoffe. Für eine sachgerechte Passivierung muss die vorangehende Verarbeitung berücksichtigt werden. Die Einzelheiten in Bezug auf die Verarbeitung und Passivierung müssen in Zusammenarbeit mit den Herstellern der zu befördernden organischen Peroxide bzw. Wasserstoffperoxide abgestimmt werden. Stand: 29. August 2023
Anlage 13 - Hinweise zur Ausführung der Kapitel 4.3 und 6.8 ADR / RID Hinweise zu Absatz 4.3.3.1.1 und 4.3.4.1.1 Tankcodierung "C" sowie 6.8.2.2.2 ADR/RID (ehemals TRT 038) Reinigungsöffnungen Hinweise zu Absatz 4.3.4.1.1 Tankcodierung "F" und 6.8.2.2.3 ADR/RID (ehemals TRT 006) Explosionsdruckstoßfestigkeit Hinweise zu Absatz 4.3.4.1.1 Tankcodierung "F" und 6.8.2.2.6 ADR/RID (ehemals TRT 030) Lüftungseinrichtungen, Flammendurchschlagsicherungen Hinweise zu Absatz 6.8.2.1.8 ADR/RID (ehemals TRT 042) Geeignete metallene Werkstoffe Hinweise zu Absatz 6.8.2.1.9 und 6.8.2.1.24 ADR/RID (ehemals TRT 010) Schutzauskleidungen Hinweise zu Absatz 6.8.2.1.23 und 6.8.2.3.2 ADR/RID (ehemals TRT 206) Erstmaliges Prüfen von Schweißnähten an Tanks für tiefgekühlte verflüssigte Gase Hinweise zu Absatz 6.8.2.1.26 ADR/RID (ehemals TRT 008) Vermeidung gefährlicher elektrostatischer Aufladung von nichtmetallischen Innenbeschichtungen Hinweise zu Unterabschnitt 6.8.2.6 ADR/RID (ehemals TRT 002) Verfahren für die Auslegung und Prüfung von Ausrüstungsteilen von Tanks, die über keine getrennte Baumusterzulassung verfügen und die zusammen mit dem Tankkörper zugelassen werden müssen Hinweise zu Abschnitt 6.8.4 Buchstabe a Sondervorschrift TC 2 ADR/RID (ehemals TRT 501) Geeigneter Stahl/Zersetzung Hinweise zu Abschnitt 6.8.4 Buchstabe b Sondervorschriften TE 4 und TE 5 ADR/RID (ehemals TRT 401) Schutzeinrichtung aus schwer entzündbaren Werkstoffen Hinweise zu Abschnitt 6.8.4 Buchstabe b Sondervorschrift TE 9 ADR/RID (ehemals TRT 510) Beschaffenheit der Verschlusseinrichtungen für bestimmte Stoffe der Klasse 5.1 hinsichtlich des Überdruckes Hinweise zu Abschnitt 6.8.4 Buchstabe b Sondervorschrift TE 11 ADR/RID (ehemals TRT 511) Dichtheit der Verschlusseinrichtungen beim Umkippen der Tanks für wässerige Lösungen von Wasserstoffperoxid und für Wasserstoffperoxid Stand: 29. August 2023
2. Behandlung von Speise- und Kesselwasser Zur Verbesserung der Speise- und Kesselwasserqualität ist eine chemische Konditionierung erforderlich. Hierbei müssen Bedingungen eingehalten werden, unter denen Korrosion bereits in denjenigen Systemen weitgehend unterbunden wird, die dem Dampferzeuger vorgeschaltet sind. Die Konditionierung muss unter Beachtung der nachfolgenden Hinweise demnach so erfolgen, z. B. durch Chemikaliendosierung vor Niederdruckvorwärmern, dass der Gehalt an Korrosionsprodukten im Speisewasser vor Kesseleintritt so gering wie möglich ist. Bei allen in Frage kommenden Fahrweisen ist die Einhaltung des in den Tafeln angegebenen pH -Bereiches im Speise- bzw. Kesselwasser notwendig. Die obere Begrenzung des pH-Wertes kann zusätzlich durch Anlagenteile bestimmt werden, die außerhalb des Gültigkeitsbereiches dieses Kapitels liegen und die aus anderen metallischen Werkstoffen als Stahl, z. B. aus Kupfer- oder Aluminiumwerkstoffen, gefertigt sind. 2.1 Konditionierung mit Alkalisierungsmitteln (alkalische Fahrweise) 2.1.1 Betrieb mit salzfreiem Speisewasser Der pH-Wert im Speisewasser soll > 9 sein. Er darf bei Durchlaufkesseln nur mit flüchtigen Alkalisierungsmitteln, z. B. mit Ammoniak, eingestellt werden, die gleichzeitig eine Alkalisierung des Kondensates bewirken. Im Speisewasser von Umlaufkesseln ist ebenfalls ein pH-Wert > 9 einzustellen; der pH-Wert des Kesselwassers soll druckstufenabhängig bei 10,0 ± 0,2 bzw. 9,5 ± 0,2 liegen. Diese Bedingung ist durch Einstellung des pH-Wertes > 9 mit flüchtigen Alkalisierungsmitteln im Speisewasser jedoch nicht erreichbar, sondern sie kann nur durch zusätzliche Dosierung fester Alkalisierungsmittel - z. B. Natriumhydroxid, Trinatriumphosphat - in das Speisewasser hinter der Abnahme des Einspritzwassers für Dampfkühler oder in das Kesselwasser erfüllt werden. Die kombinierte Anwendung flüchtiger und fester Alkalisierungsmittel ist das empfohlene Konditionierungsverfahren für Speise- und Kesselwasser von Umlauf- und Großwasserraumkesseln. Wegen unvermeidbarer Anreicherungsvorgänge bei Großwasserraumkesseln kann bei Dosierung von Natrium- oder Kaliumhydroxid infolge hoher lokaler Laugekonzentration Spannungsrisskorrosion auftreten. Deshalb wird als festes Alkalisierungsmittel für Großwasserraumkessel Trinatriumphosphat empfohlen. Die pH-Wert-Grenzen können allein durch entsprechende Dosierung gehalten werden, ohne dass die Absalzrate beeinflusst wird. Die Anwendung fester Alkalisierungsmittel erlaubt erhöhte Leitfähigkeit des Kesselwassers. Bei Erhaltung extrem niedriger Kesselwasser-Leitfähigkeiten ist die Konditionierung ausschließlich mit flüchtigen Alkalisierungsmitteln möglich, obwohl die angegebenen pH-Werte im Kesselwasser dann nicht erreicht werden. 2.1.2 Betrieb mit salzhaltigem Speisewasser Der für das Speisewasser erforderliche pH-Wert > 9 muss, wenn er nicht bereits vom Zusatzwasser her vorgegeben ist, durch Dosierung von Alkalisierungsmitteln eingestellt werden. Im Allgemeinen sind hierzu feste Alkalisierungsmittel notwendig; sofern der Verwendungszweck des Dampfes es zulässt, werden im Hinblick auf eine Alkalisierung im Kondensatbereich zusätzlich flüchtige Alkalisierungsmittel, z. B. Ammoniak, empfohlen. Im Kesselwasser ist eine Mindestalkalität entsprechend einem pH-Wert 9,5 einzuhalten, die über die Speisewasser-Alkalität beeinflussbar ist. Andererseits darf zwecks Verhütung von Laugeanreicherung und Schutzschichtzerstörung sowie Unterdrückung des Kesselwasserschäumens ein maximaler pH-Wert nicht überschritten werden. Die zulässige Höchstgrenze ist umso niedriger anzusetzen, je höher der Betriebsüberdruck ist. Bewirkt das durch Zersetzung von Hydrogencarbonaten aus enthärtetem oder teilentsalztem Zusatzwasser entstehende Natriumhydroxid eine unzulässig hohe Kesselwasseralkalität, so ist die Einhaltung bzw. das Unterschreiten der oberen pH-Wert-Begrenzung durch Absetzen von Kesselwasser sicherzustellen. Durch lokal unvermeidbare Anreicherungsvorgänge in Großwasserraum-Dampferzeugern kann bei Verwendung salzarmen Speisewassers durch eine zu hohe Konzentration an Natriumhydroxid im Kesselwasser, bevorzugt im Einwalzbereich von Rauchrohren, alkaliinduzierte Spannungsrisskorrosion auftreten. Um dieser Gefahr entgegenzuwirken, ist die genannte Mindestkonzentration an Phosphat im Kesselwasser einzuhalten und der zulässige pH-Bereich eingeschränkt. 2.2 Konditionierung mit Oxidationsmitteln (neutrale Fahrweise) Die Konditionierung mit Sauerstoff oder Wasserstoffperoxid ist bei Durchlaufkesseln in Verbindung mit dem für diese Kesselbauart erforderlichen salzfreien Speisewasser anwendbar. Die Dosierung von Oxidationsmitteln ermöglicht unter diesen Voraussetzungen den Verzicht auf eine Alkalisierung des Speisewassers. Der pH-Wert des Speisewassers soll > 6,5 sein. Diese Bedingung ist erfüllt, wenn die Leitfähigkeit des Speisewassers vor und hinter Probenahme-Kationenaustauscher gleich ist und derjenigen von salzfreiem Speisewasser entspricht. Die Dosierung des Oxidationsmittels muss so erfolgen, dass bei Sauerstoffkonzentrationen zwischen 0,050 und 0,25 mg/l die Korrosionsproduktkonzentration im Speisewasser vor Kesseleintritt das Minimum erreicht. 2.3 Konditionierung mit Alkalisierungs- und Oxidationsmitteln (kombinierte Fahrweise) Die kombinierte Dosierung von Ammoniak und Sauerstoff als Konditionierungsmittel ist bei Durchlaufkesseln in Verbindung mit dem für diese Kesselbauart erforderlichen salzfreien Speisewasser anwendbar. Bei gleichwertigem Korrosionsschutz für Stahl wie bei alternativen Fahrweisen bietet die kombinierte Konditionierung verbesserten Korrosionsschutz für Kupferwerkstoffe in Anlagenteilen außerhalb des Dampferzeugers. Die Einstellung des pH-Wertes zwischen 8,0 und 9,0 im Speisewasser mit Ammoniak gewährleistet noch keinen hinreichenden Korrosionsschutz für Stahl. Deshalb wird die Sauerstoffkonzentration zwischen 0,03 und 0,15 mg/l so bemessen, dass die Korrosionsproduktkonzentration im Speisewasser vor Kesseleintritt das Minimum erreicht. Stand: 14. März 2018
2. Begriffsbestimmungen 2.1 Salzfreies Speisewasser ist Wasser mit einem Elektrolytgehalt entsprechend einer Leitfähigkeit < 0,2 µS/cm , gemessen hinter starksaurem Probenahme-Kationenaustauscher 1) , und einer Kieselsäurekonzentration < 0,2 mg/l . 2.2 Salzarmes Speisewasser ist Wasser mit einem Elektrolytgehalt entsprechend einer Leitfähigkeit < 50 µS/cm, gemessen ohne starksauren Probenahme-Kationenaustauscher. 2.3 Salzhaltiges Speisewasser ist Wasser mit einem Elektrolytgehalt entsprechend einer Leitfähigkeit ≥ 50 µS/cm, gemessen ohne starksauren Probenahme-Kationenaustauscher. 2.4 Konditionierung im Sinne dieser Anforderungen ist die Verbesserung bestimmter Qualitätsmerkmale des Speisewassers und Kesselwassers durch Anwendung von Konditionierungsmitteln 2) , nach deren Art zwischen drei Fahrweisen unterschieden wird. 2.4.1 Konditionierung mit Alkalisierungsmitteln (alkalische Fahrweise) ist der Betrieb mit Speisewasser und Kesselwasser, deren pH -Wert durch Alkalisierungsmittel angehoben ist. 2.4.2 Konditionierung mit Oxidationsmitteln (neutrale Fahrweise) ist der Betrieb mit neutralem salzfreiem Speisewasser, dem als Oxidationsmittel Sauerstoff oder Wasserstoffperoxid zugegeben wird. 2.4.3 Konditionierung mit Alkalisierungs- und Oxidationsmitteln (kombinierte Fahrweise) ist der Betrieb mit salzfreiem Speisewasser, dessen pH-Wert mit Ammoniak angehoben und dem zusätzlich Sauerstoff zudosiert wird. 2.5 Kreislaufwasser ist Wasser, das in einer Heißwasseranlage zwischen dem Heißwassererzeuger und den Wärmeverbrauchern umgewälzt wird. 2.5.1 Salzarmes Kreislaufwasser ist Wasser mit einem Elektrolytgehalt entsprechend einer direkt gemessenen Leitfähigkeit ≤ 100 µS/cm. 2.5.2 Salzhaltiges Kreislaufwasser ist Wasser mit einem Elektrolytgehalt entsprechend einer direkt gemessenen Leitfähigkeit > 100 µS/cm. 2.6 Füll- und Ergänzungswasser ist das für die Erstbefüllung oder zum Ersatz von Verlusten zugeführte Wasser. 1) Diese Begriffsbestimmung setzt voraus, dass keine freien Basen, z. B. Natriumhydroxid, als Verunreinigung vorhanden sind. 2) Falls Hydrazin zur Anwendung gelangt, sind die berufsgenossenschaftlichen Merkblätter "Hydrazin" (ZH 1/127) und "Grundsätze für die Anerkennung von geschlossenen Umfüll- und Dosieranlagen für wässrige Lösungen von Hydrazin" (ZH 1/109) zu beachten. Stand: 14. März 2018
Origin | Count |
---|---|
Bund | 318 |
Land | 9 |
Wissenschaft | 18 |
Type | Count |
---|---|
Förderprogramm | 306 |
Text | 14 |
Umweltprüfung | 2 |
unbekannt | 19 |
License | Count |
---|---|
geschlossen | 9 |
offen | 311 |
unbekannt | 21 |
Language | Count |
---|---|
Deutsch | 322 |
Englisch | 52 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 2 |
Dokument | 8 |
Keine | 285 |
Webdienst | 1 |
Webseite | 50 |
Topic | Count |
---|---|
Boden | 248 |
Lebewesen & Lebensräume | 243 |
Luft | 227 |
Mensch & Umwelt | 341 |
Wasser | 289 |
Weitere | 330 |