Der menschengemachte Klimawandel bedroht langfristig die Stabilität der Ökosysteme des Planeten, und damit auch die Stabilität der menschlichen Gesellschaft durch Verknappung von Wasser, Nahrung und Lebensraum. Insbesondere die landwirtschaftliche Nahrungsmittelproduktion blickt einer ungewissen Zukunft entgegen und es besteht erheblicher Informationsbedarf hinsichtlich geeigneter Klimaschutzstrategien. Übergeordnetes Ziel des Vorhabens ist die Identifizierung von geeigneten Bewirtschaftungsmaßnahmen und betrieblichen Strategien zur Optimierung der Pflanzenproduktion im Sinne des Klimaschutzes. Das Projekt ModOKlim verfolgt dabei vorrangig folgende wissenschaftliche Ziele: (i) die verlässliche Reproduktion von räumlichen und zeitlichen Mustern der Produktivität landwirtschaftlicher Kulturen in Deutschland über die vergangenen 30 Jahre mit Hilfe von Agrarökosystemmodellen, (ii) die deterministische Projektion der Ertragsaussichten und damit verbundener THG-Emissionen landwirtschaftlicher Kulturen in Deutschland, (iii) die Szenarienanalyse mit Hilfe von biophysikalischen und ökonomischen Modellen zur Beurteilung von Erfolgsaussichten von Klimaschutzstrategien in Richtung von profitablen, klimaangepassten und artenreichen Anbausystemen und (iv) die Integration des aktuellsten Stands der Wissenschaft in Bezug auf die probabilistische Projektion von Extremwetterereignissen in die Projektionen der deterministischen Modelle. Ziel des Arbeitspakets 1 ist die Analyse des Auftretens ertragsrelevanter Extremwetter für landwirtschaftliche Kulturen in Vergangenheit und Zukunft. Mit Hilfe eines objekt-orientierten Ansatzes basierend auf Radardaten wird am KIT untersucht, bei welchen Umgebungsbedingungen sich schaden-relevante Hagelstürme bilden und wie sich diese Bedingungen in einem zukünftigen Klima verändern. Durch den objekt-orientierten Ansatz und Verfahren des maschinellen Lernens werden robustere Trendaussagen erwartete im Vergleich zu den bisher verwendeten Methoden.
Bedeutung des Projekts für die Praxis: - Falsche Bewirtschaftungsintensität bedeutet für ca.30.000 Milchviehbetriebe mittelfristig einen enormen wirtschaftlichen Schaden (über 70 Mio. Euro jährlich) - Überzogene Leistungsansprüche an die Wiederkäuer führen dazu, dass das betriebliche System nicht mehr kreislaufbasiert laufen und negative Umweltwirkungen auftreten können - Ökonomische Bewertung der Bewirtschaftungsintensität kann die Standortanpassung fördern und dadurch eine Steigerung der wirtschaftlichen Effizienz der grünlandbasierten Milchproduktion erreichen - Dokumentation objektiver Veränderungen auf Dauerwiesen sind für die Beratung, aber vor allem für die Landwirte selbst essentiell, um durch die maßgeschneiderte Auswahl von Bewirtschaftungsmaßnahmen und -intensitäten eine nachhaltige Aufrechterhaltung der umweltgerechten Produktivität zu gewährleisten - Neue Erkenntnisse können unter Berücksichtung maßgeblicher Kriterien die Beratung für die Grünland- und Viehwirtschaft deutlich verbessern, weil eine regionalisierte Beratung möglich wird - Basis für künftige Förderungsprogramme für Dauergrünland, welche in der Lage wären auf die regionalen Standortunterschiede (Boden, Klima, Wasser, Produktionskosten) Rücksicht zu nehmen - Daten und Versuchsergebnisse sind für den Unterricht an den Landwirtschaftlichen Fachschulen von großem Wert, weil die Schüler unmittelbar von der Forschungskooperation profitieren können. Fortschritte bei Tierzüchtung und Milchviehmanagement führten zur Steigerung der Milchleistung von 1995 auf 2016 um 2.227 kg Milch/Kuh und Jahr, das entspricht einem jährlichen Zuwachs von ca. 106 kg. Laut Rinderzucht Austria (ZAR) lag die durchschnittliche Milchleistung der österreichischen Kontrollkühe im Jahr 2016 bei (75 % der gesamten Population) bei ca. 7.425 kg Milch. Diese Entwicklung fordert zwingend eine parallele Leistungsverbesserung der pflanzenbaulichen Seite auf den Grünlandflächen. Den Dauerwiesen werden in Abhängigkeit von vielen Einflussfaktoren Grenzen im Hinblick auf Ertrag und Qualität aufgezeigt, sodass die Kluft zwischen geforderter Produktivität und effektiv erzieltem Ergebnis sehr groß werden kann. Die Leistungsfähigkeit des Dauergrünlandes wird durch die Wahl der Bewirtschaftungsmaßnahmen, aber auch durch die gegebenen Wetterbedingungen (Sommertrockenheit, Starkregen, Hagel, etc.) sehr stark beeinträchtigt. Das komplexe Ökosystem Wiese (Pflanzenbestand, Insekten, Tiere) reagiert auf die Einflüsse unterschiedlicher Faktoren mit einer positiven oder negativen Veränderung von diversen Kennwerten, welche sich jedoch oft erst durch eine langfristige Beobachtung verifizieren lassen. Die nachhaltige Sicherstellung einer umweltgerechten Bewirtschaftung und ökonomischen Produktivität von Dauerwiesen erfordert daher ein ausgewogenes Bewirtschaftungsmanagement durch das Zusammenspiel von Nutzungshäufigkeit, Düngungsintensität und Pflegemaßnahmen, welche auf den Standort angepasst sein sollten. Text gekürzt
Das Projekt WegDemo verfolgt anbindend an das erfolgreiche bis Ende 2007 gelaufene Pilotprojekt WegenerNet, ein dreiteiliges Ziel hin zur Erreichung einer professionell geführten, in Forschung und Region nachgefragten Klima- und Wetterdatenressource WegenerNet: 1.) Aufbereitung der WegenerNet Stationsdaten in operationell verfügbare hochauflösende Wetter- und Klimamonitoring-Felder für alle Daten ab Jänner 2007 (Basisauflösung 1 km x 1 km; gesamtes WegenerNet-Gebiet); 2.) Publikation, Verbreitung und Positionierung der Ergebnisse und Informationen zum aufgebauten (weltweit einzigartigen) Feldexperiment in Forschungs-Community, Öffentlichkeit und Region; 3.) Demonstration des WegenerNet Vollbetriebs in operationeller Form, Festigung der Wartungs-, Service- und Entwicklungsaufgaben bei Stationsinfrastruktur und Sensorik, beim Prozessierungssystem und bei den Nutzerschnittstellen (insbes. Web). Per Sommer 2009 soll das WegenerNet nach Abschluss des WegDemo Projekts schließlich in einen langfristig angelegten operationellen Betrieb als eine in dieser Art international einzigartige Ressource für hoch auflösende Wetter- und Klimabeobachtung übergehen. Weiters werden im Laufe des WegDemo Projektes die Kooperationen mit den komplementären flächendeckenden Messungen im WegenerNet-Gebiet zur hoch auflösenden Blitzbeobachtung (LiNet der Forschungsgruppe Sferics/Dept. f. Physik, Univ. München, D) und zur hoch auflösenden Wolken-, Regen- und Hagelbeobachtung (3D Doppler-Wetterradar der Steirische Hagelabwehrgenossenschaft und TU Graz) intensiviert werden. Ebenso werden (längerfristige) Zukunftsplanungen durchgeführt.
Abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 10 Meter auf Basis des DGM1. Für die Fläche der Freien und Hansestadt Hamburg (ohne das Gebiet des hamburgischen Wattenmeeres) wurde in 2020 eine Laserscanvermessungen (Airborne Laserscanning) durchgeführt. Die Daten liegen im Lagestatus 310 (ETRS89/UTM) vor, mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 105 cm. In Bereichen von Abschattungen (Brücken), Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig werden vom LGV folgende Rasterweiten angeboten: DGM 1 (Rasterweite 1m), DGM 10 (Rasterweite 10m), DGM 25 (Rasterweite 25m). Eine jährliche Aktualisierung dieser Daten erfolgt über Luftbildbefliegungen. Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung groß- und kleinräumige Anwendungen abgeleitet werden.
Aus Laserscanvermessungen (Airborne Laserscanning) oder photogrammetrischen Produkten abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 1 Meter für die Fläche der Freien und Hansestadt Hamburg. Die Daten stammen jeweils aus den landesweiten 3D-Laserscanbefliegungen aus 2010, 2020 und 2022 und liegen im Lagestatus ETRS89_UTM32 (Lagestatus 310) und mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH vor. Eine punktuelle Aktualisierung dieser Daten erfolgt über photogrammetrische Produkte und ist ggf. in den Metadaten der einzelnen Jahrgänge dokumentiert. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 15 cm. In Bereichen von Abschattungen (z. B.: Brücken), dichter Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig wird vom LGV ab dem Jahr 2022 folgende Rasterweite angeboten: DGM 1 (Rasterweite 1m). Ältere Jahrgänge haben zusätzlich noch folgende Rasterweiten: DGM 10 (Rasterweite 10m) DGM 25 (Rasterweite 25m) Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung für groß- und kleinräumige Anwendungen abgeleitet werden.
Die Digitalen Topographischen Karten (DTK) werden aus Digitalen Landschafts- und Geländemodellen sowie dem Amtlichen Liegenschaftskatasterinformationssystem ALKIS erzeugt und nach dem bundeseinheitlichen Signaturenkatalog der Präsentationsausgaben „basemap.de P10“ Raster visualisiert. Die DTK liegen flächendeckend und im einheitlichen geodätischen Bezugssystem und Kartenprojektion für das Land Brandenburg vor. Sie sind als Rasterdaten (farbig/grau) und als Webdienste, verfügbar. Bei Nutzung der Daten sind die Lizenzbedingungen zu beachten.
Die Digitalen Topographischen Karten (DTK) werden aus Digitalen Landschafts- und Geländemodellen sowie dem Amtlichen Liegenschaftskatasterinformationssystem ALKIS erzeugt und nach dem bundeseinheitlichen Signaturenkatalog der Präsentationsausgaben „basemap.de P10“ Raster visualisiert. Die DTK liegen flächendeckend und im einheitlichen geodätischen Bezugssystem und Kartenprojektion für das Land Brandenburg vor. Sie sind als Rasterdaten (farbig/grau) und als Webdienste, verfügbar. Bei Nutzung der Daten sind die Lizenzbedingungen zu beachten.
Die Digitalen Topographischen Karten (DTK) werden aus Digitalen Landschafts- und Geländemodellen sowie dem Amtlichen Liegenschaftskatasterinformationssystem ALKIS erzeugt und nach dem bundeseinheitlichen Signaturenkatalog der Präsentationsausgaben „basemap.de P10“ Raster visualisiert. Die DTK liegen flächendeckend und im einheitlichen geodätischen Bezugssystem und Kartenprojektion für das Land Brandenburg vor. Sie sind als Rasterdaten (farbig/grau) und als Webdienste, verfügbar. Bei Nutzung der Daten sind die Lizenzbedingungen zu beachten.
Die Digitalen Topographischen Karten (DTK) werden aus Digitalen Landschafts- und Geländemodellen sowie dem Amtlichen Liegenschaftskatasterinformationssystem ALKIS erzeugt und nach dem bundeseinheitlichen Signaturenkatalog der Präsentationsausgaben „basemap.de P10“ Raster visualisiert. Die DTK liegen flächendeckend und im einheitlichen geodätischen Bezugssystem und Kartenprojektion für das Land Brandenburg vor. Sie sind als Rasterdaten (farbig/grau) und als Webdienste, verfügbar. Bei Nutzung der Daten sind die Lizenzbedingungen zu beachten.
Das Wassergütemessnetz 2 (WGMN2) stellt im Rahmen der nationalen und internationalen Meldepflichten aktuelle Daten der interessierten Öffentlichkeit zur Verfügung. Bürger, Schulen und Behörden haben ein reges Interesse an den Daten des WGMN. Deshalb werden die Daten in sechs stationären Gewässergütemessstationen im Zehn-Minuten-Takt aktualisiert. So stehen die erhobenen Parameter in Echtzeit zur Verfügung. Hierbei werden physikalische, hydrologische, meteorologische und biologische Messgrößen erfasst, die eine dynamische Sicht auf die Gewässerbeschaffenheit ermöglichen. Die Messstationen sind an ausgewählten Standorten an der Elbe, Havel, Teltowkanal, Oder und Neiße positioniert. Die Gewässergütemessstationen sind Bestandteil langfristig konzipierter Sanierungsmaßnahmen und dienen dem Nachweis der Gewässergüte und ihrer zeitlichen Veränderung im Rahmen von international abgestimmten Mess- und Untersuchungsprogrammen, der aktuellen Gewässerüberwachung (Warndienste), der Beweissicherung und der Gewinnung von wasserwirtschaftlichen Informationen. Das WGMN trägt dazu bei, dass Auswirkungen von Störfällen bei Industriebetrieben oder von Schiffsunglücken zeitnah ermittelt und zügig Maßnahmen ergriffen werden können. Aber auch kleinere Verunreinigungen wie illegal entsorgtes Altöl vom Auto fallen durch die Messungen schnell auf. Mit der Erkennung von akuten Verschmutzungen und dem Erfassen langfristiger Trends dient das WGMN auch dazu, entsprechende Forderungen der Europäischen Wasserrahmenrichtlinie in Brandenburg umzusetzen. Hier können alle Datensätze abgerufen werden. Derzeit werden die Messwerte im Netz als Grafiken dargestellt.
| Origin | Count |
|---|---|
| Bund | 508 |
| Kommune | 7 |
| Land | 9520 |
| Wissenschaft | 8 |
| Zivilgesellschaft | 8 |
| Type | Count |
|---|---|
| Chemische Verbindung | 445 |
| Daten und Messstellen | 78 |
| Ereignis | 3 |
| Förderprogramm | 200 |
| Hochwertiger Datensatz | 3 |
| Infrastruktur | 12 |
| Kartendienst | 3 |
| Taxon | 2 |
| Text | 354 |
| Umweltprüfung | 28 |
| WRRL-Maßnahme | 9104 |
| unbekannt | 179 |
| License | Count |
|---|---|
| geschlossen | 298 |
| offen | 9619 |
| unbekannt | 25 |
| Language | Count |
|---|---|
| Deutsch | 9913 |
| Englisch | 9197 |
| andere | 12 |
| Resource type | Count |
|---|---|
| Archiv | 29 |
| Bild | 15 |
| Datei | 62 |
| Dokument | 223 |
| Keine | 438 |
| Unbekannt | 26 |
| Webdienst | 16 |
| Webseite | 9338 |
| Topic | Count |
|---|---|
| Boden | 1249 |
| Lebewesen und Lebensräume | 9925 |
| Luft | 521 |
| Mensch und Umwelt | 9912 |
| Wasser | 9641 |
| Weitere | 731 |