Die Radiookkultations-(RO)-Technik verwendet auf niedrigfliegenden (Low Earth Orbiter, LEO) Satelliten installierte Empfänger, um GPS/GNSS-Signale zu empfangen und Bogenmessungen der Erdatmosphäre und Ionosphäre durchzuführen. Aufgrund des Erfolgs der FormoSat-3/COSMIC- (Constellation Observing System for Meteorology, Ionosphere and Climate, FS3/COSMIC) -Mission, bestehend aus sechs Mikro-LEO-Satelliten, hat das gemeinsame US- und taiwanesische RO-Team beschlossen, eine COSMIC-Folgemission (sog. FS7/COSMIC2) voranzubringen. Die GNSS-RO-Nutzlast mit Namen Tri-G GNSS Radio-occultation System (TGRS) wird mehrkanalige GPS-, GLONASS- und Galileo-Satellitensignale empfangen und in der Lage sein, mehr als 10.000 RO-Beobachtungen täglich zu verfolgen, nachdem sowohl schwache als auch starke Bahnneigungs-Konstellationen vollständig abgedeckt worden sind. Man geht davon aus, die dichteren RO-Szintillationsbeobachtungen zu nutzen, um die Struktur der Erdatmosphäre und -ionosphäre genau zu analysieren und zu modellieren.Zusätzlich könnte die spezielle Art von GNSS-Multipfadverzögerungen, die von der Erdoberfläche reflektiert werden, verwendet werden, um Erdoberflächenumgebungsdaten, wie Ozeanhöhen und Seegang, zu erfassen. Die Empfindlichkeit dieser Signalcharakteristika gegenüber Ausbreitungseffekten ist für verschiedene Arten der Umweltfernerkundung geeignet. Dies hat einen Bedarf deutlich gemacht, geeignete Empfänger zu entwerfen und zu entwickeln, die reflektierte und gestreute GPS/GNSS-Signale in Echtzeit erfassen und verarbeiten können, um die Speicherung riesiger Mengen an Rohdaten zu vermeiden. Wir schlagen auch vor, das feldprogrammierbare Gatterfeld (Field Programmable Gate Array, FPGA) auf die GPS/GNSS-Reflektometrieinstrumente anzuwenden, wobei eine hohe Synchronität und ein größtmöglicher Nutzen aus den verfügbaren Hardware-Ressourcen zu erzielen wäre. Mittels Simulink/Matlab kann das FPGA auch komplexe Delay-Doppler-Map- (DDM) -Daten in Echtzeit durch Korrelation der phasengleichen und Quadraturkomponenten der Basisbandsignale berechnen. Diese Studie wird neue Ziele und Ergebnisse der GNSS-Fernerkundung der Atmosphäre, Ionosphäre, und der Ozeane sowie neue Möglichkeiten für die zukünftige FS7/COSMIC2-Mission aufzeigen.Das Projekt wird am Institut für Geodäsie und Geoinformationstechnik TU Berlin in enger Kooperation mit Wissenschaftlern des GFZ, Potsdam und des GPS Science and Application Research Center (GPSARC) der NCU, Taiwan durchgeführt.Die Ziele des Projekts lassen sich wie folgt zusammenfassen:(1) Nutzung von GPS/GNSS-RO-Atmosphärendaten und Entwicklung hochentwickelter Algorithmen für die untere Troposphäre und klimatologische Untersuchungen,(2) Erfassung und Überwachung der sporadischen E(Es)-Schicht, Szintillationen und damit zusammenhängender Effekte einschließlich vertikaler Kopplungen und(3) Entwicklung eines Echtzeit-FPGA-basierten GPS/GNSS-Reflektometers für Anwendungen im Bereich von Meereshöhen- und Seegangsmessungen.
Offshore-Windparks setzen inzwischen vermehrt Drohnen und Helikopter ein. Um den Luftraum sicherer zu überwachen und anspruchsvollere Aufgaben im Bereich Erkundung, Bau- und Qualitätsüberwachung, Inspektion und Wartung durchzuführen, ist eine verbesserte Lokalisierung und Kollisionsvermeidung erforderlich, vor allem in der Nähe von Infrastruktur bei stärkerem Wind und schlechten Sichtverhältnissen. Im Teilprojekt wird Telocate im Bereich der UWB-Lokalisierung forschen und entwickeln. Hierzu gehört die Erforschung von robusten selbstlokalisierenden Algorithmen (sich bewegende Ankerknoten) und Strategien zur Lokalisierung in schwierigen Umgebungsbedingen (z.B. Verschattung, Reflektionen).
Im beantragten Forschungsvorhaben wird der natürliche Austritt von Kohlenstoffdioxid (CO2) aus Mofetten im Eyachtal zwischen Horb und Rottenburg untersucht. CO2 kann sich in der bodennahen Atmosphäre ansammeln und in entsprechender Konzentration für Mensch und Tier gefährlich werden. Die im Eyachtal austretenden Mengen wurden bislang nicht zuverlässig quantifiziert. Darüber hinaus ist CO2 ein Treibhausgas und steht im Zusammenhang mit dem weltweiten Klimawandel. Ähnliche und auch größere Quellgebiete existieren an verschiedenen Orten der Welt. Der quantitative Einfluss dieser natürlichen geologischen Gasquellen auf den Gashaushalt der Erde ist unbekannt, da auch die Menge des ausströmenden CO2 nicht bekannt ist.Ziel des Vorhabens ist die Überwachung der natürlichen CO2 Austrittsquellen sowie der umgebenden Atmosphäre im Eyachtal. Die Messdaten dienen der Bilanzierung der Austrittsmengen sowie die Ermittlung der horizontalen und vertikalen Flüsse im Versuchsgebiet. Hierbei wird auch die zeitliche Veränderung dieser Austritte erfasst.Zu diesem Zweck soll ein mikro-meteorologisches Messsystem (Eddy-Covariance Station) in Kombination mit einem verteilten Netzwerk aus vielen kostengünstigen CO2 Sensoren installiert werden. Ein solches Netzwerk kann die inhomogene Verteilung der Austritte sowohl zeitlich als auch räumlich erfassen. Die Verwendung von kostengünstigen Sensoren erlaubt den Betrieb einer größeren Anzahl von Sensoren und damit verbunden eine größere räumliche Abdeckung.In den letzten Jahren hat die Arbeitsgruppe Umweltphysik der Universität Tübingen eine neue Methode entwickelt, CO2 mit günstigen Sensoren in Bodennähe zu messen. Ein Nachteil der kostengünstigen Sensoren liegt in der (im Vergleich zu hochwertigen Sensoren) geringeren absoluten Messgenauigkeit. Die EC Station dient daher als Referenz, um die erreichbare Genauigkeit und Langzeitstabilität des Sensornetzes zu bewerten, die günstigen Sensoren zu kalibrieren und den turbulenten Transport des CO2 zumindest an einer Stelle direkt zu messen. Für ein vollständiges Netzwerk müssen die CO2 Sensoren noch mit geeigneten Feuchte- und Temperatursensoren ergänzt werden. Die entsprechende Hardware muss beschafft und schrittweise aufgebaut werden.Im Projekt soll ein Netzwerk aus z.B. 64 Sensoren aufgebaut werden, das die räumliche und zeitliche Verteilung des CO2 im Untersuchungsgebiet experimentell bestimmt. Die Beschaffung der Geräte ist bereits von der Alfred-Teufel Stiftung finanziert. Die Messungen werden über eine Datenbank mit Internet Schnittstelle auch der wissenschaftlichen Öffentlichkeit zur Verfügung gestellt.Das Vorhaben gliedert sich in zwei Projektphasen von je drei Jahren Dauer, beantragt wird die erste Phase. In der 2. Phase ist die numerische Simulation der CO2 Ausbreitung und die Übertragung der Methode auf andere Regionen vorgesehen.
Der unbeabsichtigte Luftaustausch durch die Gebäudehülle ist eine der wesentlichen Quellen für Wärmeverluste in Gebäuden und deren Energieverbrauch. Die Quantifizierung und Identifikation einzelner Leckagen in der Gebäudehülle ist mit Stand-der-Technik Verfahren bisher anspruchsvoll, zeitaufwändig und hängt stark von der Erfahrung des jeweiligen Energieberaters ab. Das schnelle und sichere Auffinden von Leckagen spielt allerdings eine entscheidende Rolle bei einer zügigen und großflächigen Sanierung von Bestandsgebäuden. In diesem Projekt soll ein Messsystem sowie eine dafür geeignete Ultraschallquelle entwickelt werden, mit dem Ziel, Leckagen in Gebäudehüllen schnell und für Bewohner möglichst störungsfrei zu identifizieren. Das System basiert auf der Kombination von Schallquellenortung mittels Mikrofon-Array-Technologie ('Akustische Kamera') und Infrarotthermografie. Durch die kombinierte Auswertung von Akustik und Thermografie können die Vorteile beider Verfahren kombiniert und die spezifischen Nachteile der einzelnen Verfahren verringert werden. Im Labor wird untersucht, wie mit dieser Methode die energetische Relevanz (Luftaustauschrate) verschiedener Leckagen bestimmt werden kann. Entwicklungsbegleitende Tests an Sanierungsbaustellen sollen Praxisanforderungen gewährleisten und zu einer Beschleunigung der Prozesse der seriellen Gebäudesanierung führen. Abschließend ist ein Ergebnisvergleich des Systems mit einer professionellen Luftdichtheitsprüfung nach Stand der Technik geplant. SONOTEC fokussiert sich im Rahmen des kombinierten Prototyps des Messsystems auf die Entwicklung der Hardware der Ultraschallquelle.
Zielsetzung:
Im Kontext von Klimawandel und Energiekrise sind Fragen der Energiebilanz und -effizienz von Gebäuden besonders relevant. Die Baudenkmalpflege trägt durch ihre wirtschaftlichen, ökologischen und soziokulturellen Aspekte der nachhaltigen Ressourcenverwendung und damit direkt zum Klimaschutz bei. Historische Bauten, die überwiegend aus dauerhaften Materialien und Konstruktionen bestehen, sind ein gutes Beispiel für Green Culture durch energie-schonende Nutzung und bestandsorientierte Weiterentwicklung. Die beim Bau alter Gebäude bereits eingesetzte (graue) Energie muss bei sorgfältiger und schonender Erneuerung, u.a. durch Einsatz nachhaltiger Baustoffe, nicht noch einmal aufgewendet werden.
Holz war schon immer ein nachhaltiger, ressourcen- und energieschonender Werkstoff und gehört zu den ältesten Baukulturen weltweit. Allein in Deutschland gilt die Holzarchitektur (Fachwerkhäuser, Dachwerke) als prägend. Es ist daher sowohl im Sinne der Denkmalpflege als auch zur zukünftigen Nutzung von Holz als Baumaterial wichtig, Eigenschaften, Zustand und Veränderung dieses Materials zu beobachten und zu verstehen. Dazu stehen heute vielversprechende Technologien wie optische 3D-Messtechnik und KI-basierte Datenanalyse zur Verfügung, die in diesem Sektor bisher noch kaum eingesetzt werden.
Ziel dieses Vorhabens ist, ein Verfahren zur automatisierten Bauteildokumentation und
-kontrolle für Altholzbauten im Bestand zu entwickeln. Dies beinhaltet:
- Entwicklung eines prototyphaften optischen Messsystems zur Bestands- und Merkmalsaufnahme;
- Entwicklung eines Automatisierungsverfahrens zur Merkmalsdetektion;
- Automatisierung des Informationstransfers in digitales 3D-Modell.
Im Laufe des Projektes werden folgende Ergebnisse angestrebt:
- Messverfahren bestehend aus innovativer Hardware (RTI-Sensor, patentiert) und Software (KI-gestützte Merkmalserkennung) zur objektiven und dokumentierten Festigkeitsanalyse von verbautem Altholz;
- Schnittstelle zur automatischen Übertragung von Holzkenngrößen an einen Digitalen Zwilling (basierend auf BauWolke-Software/BauCAD);
- Zukünftige Vermarktungsmöglichkeiten durch Sensor/Software und erweitertes Dienstleistungsangebot durch Gutachter.
1
2
3
4
5
…
135
136
137