API src

Found 758 results.

Related terms

Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., Evaluierung und Verbesserung von konvektionszulassenden Simulationen des Lebenszyklus konvektiver Stürme mit Hilfe polarimetrischer Radardaten

Das Projekt "Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., Evaluierung und Verbesserung von konvektionszulassenden Simulationen des Lebenszyklus konvektiver Stürme mit Hilfe polarimetrischer Radardaten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Konvektive Stürme sind verantwortlich für Unwetter, wie z.B. großer Hagel, Sturzfluten und starke Windböen. Ein kritischer Faktor, der bestimmt, wie schädlich diese Ereignisse sind, ist die Wolkenmikrophysik innerhalb des konvektiven Systems. Die Prozesse der Wolkenmikrophysik tragen direkt zur Bildung von großem Hagel und Regen bei, verändern aber zusätzlich die Umgebung, in der sich die Konvektion durch latente Erwärmung und Abkühlung entwickelt. Diese Veränderungen in der Struktur des konvektiven Sturms wirken sich dann auch darauf aus, welche mikrophysikalischen Prozesse wo im Sturm aktiv sind . Über die Existenz dieser komplexen Wechselwirkungen wurde in zahlreichen Publikationen berichtet. Allerdings gibt es bisher keine Studien, die einen systematischen Ansatz zur Erforschung der Wechselwirkungen zwischen Wolkenmikrophysik und konvektiver Dynamik verfolgen. In diesem Projekt werden wir eine systematische Analyse der Wechselwirkungen zwischen den Prozessen der Wolkenmikrophysik, der Struktur konvektiver Systeme und dessen Lebenszyklus sowie der daraus resultierenden Unwetterlage durchführen. Modellsimulationen mit ICON (~1 km Auflösung) werden anhand der mikrophysikalischen Prozesse, der Sturmstruktur und des Lebenszyklus von Dual-Polarisations-Radardaten ausgewertet.Das Hauptziel dieses Projektes ist es, einen Rahmen für die Verbesserung der konvektionszulassenden Simulation von schweren konvektiven Wetterereignissen zu schaffen. Dies wird erreicht durch 1) Analyse der Prozesse der Wolkenmikrophysik, die für die Erzeugung von Niederschlägen, die zu einem Schadensereignis führen, am wichtigsten sind, 2) Evaluierung, wie gut der Lebenszyklus, die Sturmstruktur und die mikrophysikalischen Prozesse von konvektiven Stürmen, die von ICON simuliert werden, den polarimetrischen Radarbeobachtungen entsprechen. 3) Untersuchung der Empfindlichkeit der Sturmstruktur und des Lebenszyklus für die Darstellung mikrophysikalischer Prozesse.Daher wird das ICON-Modell modifiziert, um die mikrophysikalischen Prozessraten in 3D auszugeben. Mikrophysikalisches "Piggybacking" wird ebenfalls integriert, um rein mikrophysikalische Effekte von gekoppelten mikrophysikalisch-dynamischen Effekten zu trennen.Am Ende dieses Projektes werden wir in der Lage sein, die derzeitige Fähigkeit von ICON zusammenzufassen, konvektive Stürme und deren schädliche Niederschläge zu simulieren, zu identifizieren, welche Prozesse für die Erzeugung der schädlichen Niederschläge am wichtigsten sind, und Verbesserungen zu empfehlen, um aktuelle Mängel im Modellsystem zu beheben. Das Endergebnis wird nicht nur ein verbessertes Verständnis der realen und modellierten Konvektion sein, sondern auch spezifische Empfehlungen zur Verbesserung der Vorhersage von schädliche Niederschläge aus Konvektion geben.

Gutachten: Vertiefende Untersuchung zur Wirtschaftlichkeit des Verkehrsprogramm Deutsche Einheit Nr. 17 - Ausbau des Elbe-Kanals und der Untere-Havel-Wasserstrasse

Das Projekt "Gutachten: Vertiefende Untersuchung zur Wirtschaftlichkeit des Verkehrsprogramm Deutsche Einheit Nr. 17 - Ausbau des Elbe-Kanals und der Untere-Havel-Wasserstrasse" wird/wurde ausgeführt durch: Institut für ökologische Wirtschaftsforschung GmbH (gemeinnützig).Aktualisierung des IOEW-Gutachtens 'Oekonomisch-oekologische Bewertung des Projektes 17 Deutsche Einheit' unter Beruecksichtigung neuer Gutachten und Erkenntnisse; - Ermittlung zusaetzlich zu beruecksichtigender Kosten; - Darstellung und Pruefung von Bewertungsmethoden und -verfahren hinsichtlich ihrer Eignung zur Beruecksichtigung der oekologischen Folgewirkungen im Rahmen des Bundesverkehrswegeplanes und Verkehrsprojekten.

Berlin – Hotspot urbaner Biodiversität

Die Eignung einer Stadt als Lebensraum für Tiere und Pflanzen hängt maßgeblich davon ab, wie unterschiedlich die Standortqualitäten hinsichtlich der Böden, der Topographie und des Wasserhaushaltes sind und wie reich und vernetzt die Biotopstrukturen. Oft ist die biologische Vielfalt an den Randbereichen der Stadt mit ihren vielfältigen Freiräumen und geringerem landwirtschaftlichen ‚Leistungsdruck‘ sogar höher als im Umland. Das gilt auch für die grüne Metropole Berlin. Sie ist reich an Lebensräumen, mit einem Wechsel ausgestalteten und ‚wilderen‘ Parkanlagen, gänzlich spontaner Vegetation auf Brachflächen, Trockenrasen auf diversen Nutzflächen, nassen Fließtälern und Mooren, Wiesen, Wäldern und Wasserlandschaften. Auch aufgrund menschlicher Einwirkung ist die Vielfalt der Landschaften so groß. Mit die wertvollsten Trockenrasen Berlins befinden sich auf den ehemaligen Flugfeldern Tegel, Johannistal und Tempelhof. Der Flughafensee war früher eine Sand- und Kiesgrube und ist heute bedeutsames Vogelschutzgebiet, die offenen Wiesen der Rieselfelder dienten einst der Abwasserbehandlung. Selbst unsere Häuser mit ihren Spalten, Simsen, Ritzen und Höhlungen sind Ersatz-Felslandschaften für viele Brutvögel und Fledermäuse. Es ist der Mix aus unterschiedlichen Stadt- und Landschaftsräumen, der vielen Arten bietet, was sie zum Leben brauchen. Entsprechend breit ist die Berliner Strategie zur Biologischen Vielfalt aufgestellt, die für die unterschiedlichen Standorte entsprechende Ziele formuliert. Berlin ist eine der artenreichsten Städte in ganz Europa. Neben den fast 3,7 Millionen Menschen leben hier geschätzt 20.000 Pflanzen- und Tierarten. Von den in Deutschland vorkommenden Arten sind es fast 2.200 von 3.300 Gefäßpflanzen, mehr als 300 von über 550 Wildbienenarten und 185 von 260 Brutvogelarten in Berlin. Berühmt sind die Berliner Nachtigallen, die mit bis zu 1.700 Brutpaaren vertreten sind. Mit mindestens 43 Winterquartieren und allein 10.000 Übernachtungsgästen in der Zitadelle Spandau, ist Berlin europäische Hauptstadt der Fledermäuse. Der Biber hält sich in Havel und Spree auf. Der Teichmolch laicht in fast allen naturnahen Kleingewässern, auch in den urbanen Parkanlagen. Die Population der Dachse nimmt zu und auch Feldhasen werden immer öfter im Stadtgebiet gesichtet. Elemente des Stadtgrüns werden auch als grüne Infrastruktur bezeichnet, denn sie sind für die Daseinsvorsorge unerlässlich und bedürfen einer strategischen Planung. Die grüne Infrastruktur ist der Lebensraum für Pflanzen und Tiere, Bewegungs- und Erholungsraum für die Berlinerinnen und Berliner, essenziell für Klima, Wasserhaushalt, Luftqualität und vieles mehr. Was viele von uns immer schon als Bauchgefühl hatten, wird wissenschaftlich immer besser belegt: Menschen brauchen den Kontakt zur Natur. Dabei geht es nicht nur darum, dass eine gesunde Umwelt und intakte Ökosysteme unsere Lebensgrundlage sind, sondern dass die grüne Infrastruktur für die mentale und soziale Gesundheit wichtig ist. Aktuelle Forschungsergebnisse belegen, dass Menschen besser mit den stadttypischen Stressfaktoren umgehen können, wenn sie einen guten Zugang zu öffentlichen Grünflächen haben. Insbesondere dann, wenn diese den sozialen Austausch fördern. Es wird zudem immer mehr über die positive Wirkung eines biologisch vielfältigen Wohnumfelds für das Immunsystem bekannt. Nicht erst seit der Corona-Pandemie wissen wir: Parks und Grünflächen sind unverzichtbar für die Lebensqualität in der Stadt. Lesen Sie weiter: Teil 1: Biologische Vielfalt – globaler Kontext Teil 3: Berliner Strategien und Maßnahmen für eine gute Nachbarschaft von Mensch, Tier und Grün

Wassergütemessnetz 2 des Landes Brandenburg

Das Wassergütemessnetz 2 (WGMN2) stellt im Rahmen der nationalen und internationalen Meldepflichten aktuelle Daten der interessierten Öffentlichkeit zur Verfügung. Bürger, Schulen und Behörden haben ein reges Interesse an den Daten des WGMN. Deshalb werden die Daten in sechs stationären Gewässergütemessstationen im Zehn-Minuten-Takt aktualisiert. So stehen die erhobenen Parameter in Echtzeit zur Verfügung. Hierbei werden physikalische, hydrologische, meteorologische und biologische Messgrößen erfasst, die eine dynamische Sicht auf die Gewässerbeschaffenheit ermöglichen. Die Messstationen sind an ausgewählten Standorten an der Elbe, Havel, Teltowkanal, Oder und Neiße positioniert. Die Gewässergütemessstationen sind Bestandteil langfristig konzipierter Sanierungsmaßnahmen und dienen dem Nachweis der Gewässergüte und ihrer zeitlichen Veränderung im Rahmen von international abgestimmten Mess- und Untersuchungsprogrammen, der aktuellen Gewässerüberwachung (Warndienste), der Beweissicherung und der Gewinnung von wasserwirtschaftlichen Informationen. Das WGMN trägt dazu bei, dass Auswirkungen von Störfällen bei Industriebetrieben oder von Schiffsunglücken zeitnah ermittelt und zügig Maßnahmen ergriffen werden können. Aber auch kleinere Verunreinigungen wie illegal entsorgtes Altöl vom Auto fallen durch die Messungen schnell auf. Mit der Erkennung von akuten Verschmutzungen und dem Erfassen langfristiger Trends dient das WGMN auch dazu, entsprechende Forderungen der Europäischen Wasserrahmenrichtlinie in Brandenburg umzusetzen. Hier können alle Datensätze abgerufen werden. Derzeit werden die Messwerte im Netz als Grafiken dargestellt.

Oberflächengewässer-Messstelle Havel - oh. Kälberwerder (Messstellen-Nr.: 340)

Die Messstelle dient der Überwachung des Oberflächengewässers Havel in Berlin. Der Status der Messstelle ist nicht näher angegeben.

Oberflächengewässer-Messstelle Havel - Grunewaldturm (Messstellen-Nr.: 330)

Die Messstelle dient der Überwachung des Oberflächengewässers Havel in Berlin. Der Status der Messstelle ist nicht näher angegeben.

Oberflächengewässer-Messstelle Havel - Krughorn (Messstellen-Nr.: 345)

Die Messstelle dient der Überwachung des Oberflächengewässers Havel in Berlin. Der Status der Messstelle ist nicht näher angegeben.

Oberflächengewässer-Messstelle Havel - Pichelsdorfer Gemünd (Messstellen-Nr.: 325)

Die Messstelle dient der Überwachung des Oberflächengewässers Havel in Berlin. Der Status der Messstelle ist nicht näher angegeben.

Oberflächengewässer-Messstelle Oberhavel - Höhe Freibad Schäferstraße (Messstellen-Nr.: 315)

Die Messstelle dient der Überwachung des Oberflächengewässers Havel in Berlin. Der Status der Messstelle ist nicht näher angegeben.

Oberflächengewässer-Messstelle Oberhavel - Schleuse Spandau (Messstellen-Nr.: 320)

Die Messstelle dient der Überwachung des Oberflächengewässers Havel in Berlin. Der Status der Messstelle ist nicht näher angegeben.

1 2 3 4 574 75 76