Umfassende Gebäudesanierung und mehr erneuerbare Energien führen zum Ziel Das Umweltbundesamt (UBA) empfiehlt, schnell mit einer umfassenden Sanierung des Gebäudebestands in Deutschland zu beginnen. Maria Krautzberger, Präsidentin des UBA: „Je früher wir anfangen, unsere Häuser energetisch zu sanieren und mit erneuerbaren Energien zu versorgen, desto günstiger wird es – für uns und für das Klima.“ Bis 2050 soll der Gebäudebestand Deutschlands nahezu klimaneutral werden. Dieses Ziel hat sich die Bundesregierung im Rahmen der Energiewende gesetzt. Eine aktuelle Studie des UBA zeigt nun, wie das gehen kann. Zwei Wege führen zu diesem Ziel: Sowohl eine umfassende Gebäudesanierung als auch eine verstärkte Versorgung der Gebäude durch erneuerbare Energien. Beide Maßnahmen in Kombination können den Primärenergieverbrauch des Gebäudebestands um 80 Prozent senken im Vergleich zum heutigen Zustand. Die Jahresgesamtkosten sind für beide Varianten in etwa gleich, wie das UBA anhand von Modellberechnungen ermittelte. Konkret untersuchte das UBA drei sogenannte Zielbilder, die den Gebäudebestand 2050 beschreiben. Sie unterscheiden sich jeweils im Sanierungsgrad sowie darin, wie viel Endenergie die Gebäude nach der Sanierung noch verbrauchen und wie hoch der Anteil an erneuerbarer Energie dann sein muss, um als nahezu klimaneutral zu gelten. Maria Krautzberger: „Wir empfehlen, Gebäude möglichst umfassend zu sanieren. Denn je effizienter die Gebäude sind, desto mehr erneuerbare Energien werden für andere Anwendungen frei.“ Allein der Unterschied im Stromverbrauch der einzelnen Zielbilder entspricht der Stromerzeugung aller Windkraftanlagen 2014 in Deutschland. Hinsichtlich der CO2 -Emissionen der Gebäude sind die drei Transformationspfade fast deckungsgleich: Sie sinken zwischen 81 und 83 Prozent. Auch in den Jahresgesamtkosten unterscheiden sie sich nur gering. So fallen höhere Kosten entweder für Investitionen in die Gebäudesanierung oder für den Bezug erneuerbarer Energien an. Die Studie „Klimaneutraler Gebäudebestand 2050“ wurde vom Öko-Institut im Auftrag des Umweltbundesamtes erstellt. Sie beschäftigt sich mit dem Gebäudebestand auf zwei Ebenen: Mit Einzelgebäuden und mit dem Bestand als Ganzes. Die Studie beschreibt den aktuellen Stand und die absehbare Entwicklung der Techniken, die für die Gebäudesanierung zur Verfügung stehen: Wärmedämmstoffe, Lüftung, Heiztechniken usw. Eine Vielzahl einzelner Gebäude vom unsanierten Haus bis zum Passivhaus wurde auf ihren Energieverbrauch und die entstehenden Kosten hin untersucht. Geprüft wurde auch, wie gut ein nahezu klimaneutraler Gebäudebestand zum zukünftigen Energiesystem passt. Dass schon heute Sanierungen möglich sind, die zur Klimaneutralität der Gebäude führen, zeigt die Berliner Wohnungsgenossenschaft Märkische Scholle gerade mit einem Demonstrationsprojekt im Umweltinnovationsprogramm: Vier Mehrfamilienhäuser sollen Ende 2016 nach der Sanierung keine CO2-Emissionen mehr für das Heizen und Belüften verursachen, und die Mieterinnen und Mieter können von gleich bleibenden Warmmieten profitieren.
Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von ZENNER Hessware GmbH durchgeführt. Dieses Projekt soll am Ende belegen, dass sich intelligente Messsysteme (iMSys) in Kombination mit CLS-Steuerboxen für den Betrieb des Smart Grids auf Basis von internationalen Standards eignen. Bestehende Komponenten der Prosumer werden dabei in das Netz integriert, um ein verbessertes Einspeisemanagement, eine Anpassung und Kontrolle von Systemdienstleistungen und eine sichere Marktintegration zu erreichen. Hierzu gehören zum Beispiel PV Anlagen, Heizstäbe und Kühlanlagen sowie Ladesäulen für Elektroautos und Batteriespeicher. Im Rahmen des Projekts werden zwei bereits verfügbare CLS Applikationen und neun neue CLS Applikationen in eine CLS-Steuerbox integriert, in dem Smart Grid Labor der Hochschule Ulm auf Kommunikations- und Funktionseigenschaften getestet und im Rahmen eines Feldtests gemeinsam mit Partnern aus Industrie und Energieversorgung erprobt.
Das Projekt "Teil 3" wird vom Umweltbundesamt gefördert und von Meteocontrol GmbH durchgeführt. Dieses Projekt soll am Ende belegen, dass sich intelligente Messsysteme (iMSys) in Kombination mit CLS-Steuerboxen für den Betrieb des Smart Grids auf Basis von internationalen Standards eignen. Bestehende Komponenten der Prosumer werden dabei in das Netz integriert, um ein verbessertes Einspeisemanagement, eine Anpassung und Kontrolle von Systemdienstleistungen und eine sichere Marktintegration zu erreichen. Hierzu gehören zum Beispiel PV Anlagen, Heizstäbe und Kühlanlagen sowie Ladesäulen für Elektroautos und Batteriespeicher. Im Rahmen des Projekts werden zwei bereits verfügbare CLS Applikationen und neun neue CLS Applikationen in eine CLS-Steuerbox integriert, in dem Smart Grid Labor der Hochschule Ulm auf Kommunikations- und Funktionseigenschaften getestet und im Rahmen eines Feldtests gemeinsam mit Partnern aus Industrie und Energieversorgung erprobt.
Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von Technische Hochschule Ulm, Institut für Energie- und Antriebstechnik durchgeführt. Dieses Projekt soll am Ende belegen, dass sich intelligente Messsysteme (iMSys) in Kombination mit CLS-Steuerboxen für den Betrieb des Smart Grids auf Basis von internationalen Standards eignen. Bestehende Komponenten der Prosumer werden dabei in das Netz integriert, um ein verbessertes Einspeisemanagement, eine Anpassung und Kontrolle von Systemdienstleistungen und eine sichere Marktintegration zu erreichen. Hierzu gehören zum Beispiel PV Anlagen, Heizstäbe und Kühlanlagen sowie Ladesäulen für Elektroautos und Batteriespeicher. Im Rahmen des Projekts werden zwei bereits verfügbare CLS Applikationen und neun neue CLS Applikationen in eine CLS-Steuerbox integriert, in dem Smart Grid Labor der Hochschule Ulm auf Kommunikations- und Funktionseigenschaften getestet und im Rahmen eines Feldtests gemeinsam mit Partnern aus Industrie und Energieversorgung erprobt.
Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von Klimaschutz- und Energieagentur Baden-Württemberg GmbH (KEA) durchgeführt. Um das Interesse und die Nachfrage für Brennstoffzellen zur Wärme- und Stromversorgung auf Seiten der Hauseigentümer zu steigern, plant der Antragsteller gemeinsam mit dem Antragsteller 'co2online gGmbH' eine Informations- und Akzeptanzkampagne 'Baden-Württembergs Brennstoffzellen-Heizungen im Praxistest: Die Vorteile der Brennstoffzellentechnologie greifbar machen.' Primäres Ziel des Projektes ist die Steigerung der Nachfrage nach dem KfW-Förderprogramm 433 in Baden-Württemberg (BW) und somit eine stärkere Verbreitung der Brennstoffzellentechnologie (BZ) in BW. Hierdurch wird eine Steigerung der Sanierungsrate in BW angestrebt (Klimaschutzgesetz und EWärmeG), wobei die BZ gleichzeitig als Anknüpfungspunkt für eine qualifizierte Energieberatung dienen soll. Hierfür zielt das Projekt auf eine Steigerung der Bekanntheit und der Beratungszahlen regionaler Energie- und Klimaschutzagenturen sowie weiterer Experten vor Ort in BW ab. Durch diese Nachfragesteigerung sowie eine gezielte Ansprache und Motivation von Energieberatern, Planern und Handwerkern sollen zudem die Angebotsseite in BW gestärkt und somit weitere Umsätze angestoßen werden. So mündet das durch die Kampagne geweckte Interesse in einer entsprechend verstärkten Beratung und Umsetzung vor Ort. Der Praxistest dient dabei als roter Faden und inhaltliche Basis für landesweite Presse- und Öffentlichkeitsarbeit, die Website des Projektes und regionale Veranstaltungen.
Das Projekt "Reducing CO and Nox emissions from coking ovens by means of a novel, composite heating system" wird vom Umweltbundesamt gefördert und von Ruhrkohle AG durchgeführt. Objective: The objective of the study is to obtain mathematical tools which will not only permit innovative new designs for flues (and so increase the safety margin at the planning state), but will also make it possible to improve heating conditions in existing systems by making fuller use of the scope for adjustments. General Information: Discussion of the greenhouse effect and more extensive knowledge of the effects of pollutants on man and nature have increased awareness with regard to the environment. An obvious consequence of this has been the introduction of more stringent requirements concerning the limitation of pollutant emissions which have subsequently shown up the shortcomings of the heating systems used for the various types of coking oven. The production targets which operators have to aim at for economic reasons mean that conventional heating systems increasingly cannot fully comply with requirements in respect of environmental and labour protection. The primary cause of this situation is the extreme complexity of coking oven heating systems. The main problem with coking ovens is that the lack of individual flow control for the large number of ceramic-lined combustion chambers prevents controlled regulation of effluent flows. The project will concentrate on the following points: A) Assessment, status of knowledge, planning: Planning of a modular model system based on a systematic analysis and evaluation of experience, findings and operational data as well as of information on possible measures to reduce CO and NOx emissions from coking oven heating flues, e.g. - stage combustion, staged air supply - internal flue gas recirculation, circular current - external flue gas recirculation. B) Model studies: 1. Construction of a modular model system for experimental flow and mixing studies. 2. Flow studies on models or part-models to establish optimum speed and mixing conditions in the coking oven heating flue. 3. Numerical simulation exercises covering flow, mixing and combustion processes in the model system. C) Operational tests: 1. Measurement of temperatures and concentrations in the heating flue, particularly CO release and NOx formation. 2. Application of the model results in the practical design of the new type of heating flue. 3. Control measurements under operational conditions to quantify the combustion process in the new flue.
Das Projekt "Evaluierung der Novelle der 1. BImSchV von 2010" wird vom Umweltbundesamt gefördert und von DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH durchgeführt. a) In dem Forschungsvorhaben soll die Novelle der 1. BImSchV von 2010, die mit niedrigen Emissionsgrenzwerten, dem Austausch von Altanlagen und der Einführung von wiederkehrenden Messungen bei bestimmten Anlagenarten verbunden ist, evaluiert werden, um Verbesserungspotentiale aufzuzeigen. Im Fokus stehen dabei die Maßnahmen zur Reduzierung der Luftbelastung aus Festbrennstofffeuerungen. Sowohl die Prüfstandsmessungen im Labor als auch die Qualitätssicherung von Anlagen und Brennstoffen - während des Herstellungsprozesses und im dauerhaften Betrieb - sollen hinsichtlich Verbesserung untersucht werden. Darüber hinaus soll der Einfluss des Anlagenbetreibers auf das Emissionsverhalten im realen Alltagsbetrieb betrachtet werden und welche Möglichkeiten zur Verringerung der Realemissionen bestehen. Dies bezieht sich vorrangig auf Einzelraumfeuerungsanlagen. Außerdem soll die Frage beantwortet werden, ob Betriebsmessungen, wie sie für zentrale Heizkessel vorgeschrieben sind, für Einzelraumfeuerungsanlagen möglich sind. Für alle genannten Themengebiete sollen Forschungsergebnisse aus bisherigen Veröffentlichungen (z.B. Biomis) in die Auswertung einfließen. b) Als Output des Vorhabens soll eine Veröffentlichung des Abschlussberichtes mit den erhobenen Daten erfolgen, zudem sind im Verlauf des Vorhabens sowie zum Abschluss Veranstaltungen (z.B. Workshops) mit fachlichen Zielgruppen (Schornsteinfegerverband, Industrieverband Heiz- und Küchentechnik etc.) durchzuführen, deren Ergebnisse in die Studie eingehen sollen. Mit der Studie soll die Novelle der 1. BImSchV von 2010 evaluiert werden, um einen Anpassungsbedarf beurteilen und mögliche Lösungsansätze aufzeigen zu können.
Das Projekt "Gas-fuelled rapid heating furnace" wird vom Umweltbundesamt gefördert und von Gaswärme-Institut e.V. durchgeführt. Objective: To demonstrate the feasibility of reducing energy consumption in the reheating of forgings and to improve forging quality by the replacement of electric and conventional gas-fired furnaces, by a new gas-fuelled rapid heating furnace incorporating and combining known technical features: these will considerably reduce energy consumption and advance the engineering design of conventional gas-fired reheating furnaces. General Information: Rapid heating furnaces are often installed in forging shops to treat small forgings. It is important to heat the forging rapidly and evenly and to minimize scale formation. The object of this research is to produce a micro-structure to eliminate the need for further heat treatment. The advantage of an inductive, over a conventional gas-fuelled furnace is the low level of scale formation due to the brief furnace dwell time. On the other hand, inductive furnaces are operated by a secondary source of energy (electricity) and are therefore expensive to operate. In addition, temperature distribution in a charge heated by a conventional furnace is unsatisfactory. The furnace to be designed, installed and operated for the project is a gas fuelled rapid heating installation using natural gas as the primary energy source. Charge heating will be in 3 zones (soaking, heating-up and preheating) to reheat the charge. As in the case of pusher type furnaces, charge and atmosphere movement will be counter current. In order to minimize scale formation, the soaking zone will be fired in the fuel-rich mode, while the heating-up zone will be fuelled by a fuel-lean gas and air mixture, burning uncombusted gases from the soaking zone. Staged combustion minimizes NO output and environmental impact. Fuel-rich soaking zone operation necessitates tests to establish combustion air preheat temperature, the acceptability of the fuel/air system with respect to sooting and safety aspects associated with CO formation. Forgings will be charged in transverse mode and a recuperator incorporated in the furnace for combustion air preheating: the furnace control system will feature high precision fuel/air ration controllers for heating-up and soaking zones. Each controller is capable of maintaining an air factor of between 0.5 and 1.5 to allow exact adjustment of the fuel/air ratio and to minimize scaling. An optical control system monitors the temperature of the charge leaving the furnace. Fuel gas flow is adjusted by temperature controller as a function of the difference between temperature as measured by the optical system and set point temperature. When fuel gas flow is adjusted, combustion air flow will also be adjusted by the fuel/air ratio control system. A shop function is also incorporated in the furnace control system: this is capable of lowering gas flow to between to 10-30 per cent of rated flow. For this purpose the control system will immediately reduce gas flow if furnace operation is switched to idle mode. Simultaneously...
Das Projekt "Passive Nutzung von Solarenergie in einer Gruppe von fuenf Reihenhaeusern" wird vom Umweltbundesamt gefördert und von Domosolar AG durchgeführt. Objective: Demonstration of innovative construction of 5 row houses, opened to the South with protection to the North, heat recovery system for shower and kitchen water and application of air floor heating systems, which should reduce energy consumption compared to a conventional house by 60 per cent. The calculated annual load for space heating is approx. 8400 kWh/year. General Information: The five row houses are opened to the South, protected by plantation to the West and by an earth dam to the North. The houses have a total volume of 510 m3 and a total heated area of approx. 120 m2. The space heating demand is calculated to be 8400 kWh/year against 27500 kWh/year of a conventionally built house. This is achieved by improved insulation, direct solar gain, sun space and a heat recovery from sewage water. The middle house - South is used as an office building with four people. The use of air heating systems in the floor and a heat recovery system from warm sewage water deriving from the kitchen and bathroom is innovative for individual row houses. Solar energy is used by an attached sun space, active solar system for DHW (Domestic Hot Water) and solar air collectors with heat storage system. In order to optimise air heating systems for further applications five different systems will be built: 1. Conventional air heating (system Brink) incorporating a sun space for air-warming up, 2. Like 1, but the sun space is replaced by solar air collectors; 3. Like 2, but with a short term heat storage system, 4. Air warming-up by conventional gas fired heat generator or air collectors and room heating by a special floor heating system ; heat storage system, 5. Like 4, but with a sun space instead of air collectors. Variants 1 to 3 are operated as open systems, the warm air is transported directly into the rooms and then sent back in the warming-up system. Variants 4 and 5 use the combination of an air heating with floor heating system (a so-called air floor heating system). These two variants include also sun boilers for DHW. In the 3 first variants DHW is produced by a gas fired boiler. Achievements: The energy consumption show that the houses at the end of the terrace have a higher energy load than the middle ones, this was expected. The highest consumption is in corner house east in January (= 100 per cent) against the house used as an office (72 per cent).
Das Projekt "Solar hay drying in specially constructed hay storage halls" wird vom Umweltbundesamt gefördert und von Technische Universität München, Bayerische Landesanstalt für Landtechnik durchgeführt. Objective: The aim of the project is the production of quality hay in specially designed storage halls with a solar roof on four sites with different climatic conditions without the use of conventional fuel, except electricity for the blower. General Information: The standard hall with compartments has a ground surface of 240 m2 with a usefull storage volume of 937 m3. The conventional roof of red concrete tiles with the supporting structure built as air channels is acting as solar collector (280 m2). The warm air (6 - 7 degree of Celsius. above inlet temperature) is blown via a collecting duct to the channels on the floor of the drying and storage compartments with a total hay capacity of approximately 900 m3. The humidity of the hay is reduced from approximately 40 per cent to 14 per cent. During the harvesting period of approximately 60 days an energy saving of 29,300 KWh compared to a conventional system (Diesel engine driven blower with use of waste heat and auxiliary heating for drying) is forecasted. This figure is based on measurements on a pilot plant. The total energy saving for four standard halls is estimated at 10 TOE, taking into account the electricity consumption of the blower (7,5 - 9 KW; 4,000 KWh/y) and an efficiency of 70 per cent for the conventional system. The standardised storage and drying halls are installed at four different sites. 1. Schuster, Frettenhofen 2. Kebinger, Lehen 3. Rieder, Schoenau 4. Lehr und Versuchungsgut, Schleissheim The first three are farmers the last is an agricultural institution of the Technical University Munich. The hall in Schleissheim has the double capacity of the other ones, achieved by adding more compartments. Achievements: In two of the four plants the first monitoring results were achieved in 1986. SCHUSTER The hay was dried to 8 per cent instead of 14 per cent thus the electrical consumption of 15,8 kWh/ (+ dried material) was higher than calculated. KEBINGER A particular interesting result was found during the first monitoring period: while increasing the air flow on a sunny day through the ducts under the roof, the air temperature did rise instead of fall, which means that the heat exchanging efficiency is rising more than proportional with the air flow. More investigations will follow.
Origin | Count |
---|---|
Bund | 416 |
Land | 17 |
Type | Count |
---|---|
Förderprogramm | 397 |
Text | 22 |
Umweltprüfung | 2 |
unbekannt | 12 |
License | Count |
---|---|
closed | 31 |
open | 397 |
unknown | 5 |
Language | Count |
---|---|
Deutsch | 433 |
Englisch | 43 |
Resource type | Count |
---|---|
Datei | 1 |
Dokument | 9 |
Keine | 276 |
Unbekannt | 1 |
Webseite | 156 |
Topic | Count |
---|---|
Boden | 251 |
Lebewesen & Lebensräume | 220 |
Luft | 186 |
Mensch & Umwelt | 433 |
Wasser | 168 |
Weitere | 433 |