API src

Found 136 results.

Related terms

Gesundheitsrisiken durch Hitze

<p>Sommerlich hohe Lufttemperatur birgt für Mensch und Umwelt ein hohes Schädigungspotenzial. Der Klimawandel führt nachweislich vermehrt zu extremer Hitze am Tag und in der Nacht, wodurch sich die gesundheitlichen Risiken für bestimmte Personengruppen erhöhen können. Für die Gesundheit von besonderer Bedeutung sind Phasen mit mehrtägig anhaltender, extremer Hitze.</p><p>Indikatoren der Lufttemperatur: Heiße Tage und Tropennächte</p><p>Die klimatologischen Kenngrößen „Heiße Tage“ und „Tropennächte“ des Deutschen Wetterdienstes (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠) werden unter anderem zur Beurteilung von gesundheitlichen Belastungen verwendet. So ist ein „Heißer Tag“ definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius (°C) liegt, und eine „Tropennacht“ als Nacht, deren niedrigste Temperatur 20 °C nicht unterschreitet.</p><p>Die raumbezogene Darstellung von „Heißen Tagen“ (HT) und „Tropennächten“ (TN) über die Jahre 2000 bis 2024 zeigt, dass diese zum Beispiel während der extremen „Hitzesommer“ in den Jahren 2003, 2015, 2018 und 2022 in Deutschland verstärkt registriert wurden (siehe interaktive Karte „Heiße Tage/Tropennächte“).</p><p>Zu beachten ist, dass ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ regional unterschiedlich verteilt und ausgeprägt sein können, wie die Sommer der Jahre 2015, 2018, 2019 und 2022 zeigen. So traten Heiße Tage 2015 erheblich häufiger in Süddeutschland (maximal 40 HT) als in Norddeutschland (2015: maximal 18 HT) auf. Auch Tropennächte belasteten die Menschen im Süden und Westen Deutschlands häufiger: 2015 in Südwestdeutschland (maximal 13 TN). Besonders und wiederkehrend betroffen von extremer Hitze Demgegenüber betraf die extreme Hitze der Sommer 2018 und 2019 sind einige Teilregionen Süd- und Südwestdeutschlands (oberes Rheintal und Rhein-Maingebiet) sowie weite Teile Mittel- und Ostdeutschlands, wie Südbrandenburg und Sachsen (bis zu 45 HT und 13 TN). Während 2022 vor allem die Oberrheinische Tiefebene von Basel bis Frankfurt am Main sowie weitere Ballungsräume in Süddeutschland mit weit mehr als 30 Heißen Tage betroffen waren, lag der Hitzeschwerpunkt des Sommers 2024 mit bis zu 30 Heißen Tagen erneut in Brandenburg und Sachsen, bei nur sehr wenigen Tropennächten. 2025 gab es 11 Heiße Tage (gemittelt über die Fläche Deutschlands).</p><p>Informationen zur interaktiven Karte</p><p>Quellen: ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ 2000-2025 – ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠/Climate Data Center, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ 2000-2025 – DWD/Climate Data Center; Daten für 2025 – Persönliche Mitteilung des DWD vom 14.11.2025.</p><p>Die Bearbeitung der interaktiven Karte erfolgt durch das Umweltbundesamt, FG I 1.6 und I 1.7.</p><p>Gesundheitsrisiko Hitze</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ beeinflusst in vielfältiger Weise unsere Umwelt. Klimamodelle prognostizieren, dass der Anstieg der mittleren jährlichen Lufttemperatur zukünftig zu wärmeren bzw. heißeren Sommern mit einer größeren Anzahl an Heißen Tagen und Tropennächten führen wird. Extreme Hitzeereignisse können dann häufiger, in ihrer Intensität stärker und auch länger anhaltend auftreten. Es gibt bereits belastbare Hinweise darauf, dass sich die maximale Lufttemperatur in Deutschland in Richtung extremer Hitze verschieben wird (vgl. Friedrich et al. 2023). Dieser Trend ist in der Abbildung „Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 Grad Celsius“ bereits deutlich erkennbar.</p><p>Die mit der Klimaerwärmung verbundene zunehmende Hitzebelastung ist zudem von erheblicher gesundheitlicher Bedeutung, da sie den Organismus des Menschen in besonderer Weise beansprucht und zu Problemen des Herz-Kreislaufsystems führen kann. Außerdem fördert eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Entstehung von gesundheitsgefährdendem bodennahem Ozon (siehe <a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-ozon">„Gesundheitsrisiken durch Ozon“</a>). Anhaltend hohe Lufttemperatur während Hitzeperioden stellt ein zusätzliches Gesundheitsrisiko für die Bevölkerung dar. Bei Hitze kann das körpereigene Kühlsystem überlastet werden. Als Folge von Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit chronischen Vorerkrankungen (wie zum Beispiel Herz-Kreislauf-Erkrankungen) sind von diesen Symptomen besonders betroffen. So werden während extremer Hitze einerseits vermehrt Rettungseinsätze registriert, andererseits verstarben in den beiden Hitzesommern 2018 und 2019 in Deutschland insgesamt etwa 15.600 Menschen zusätzlich an den Folgen der Hitzebelastung (vgl. Winklmayr et al. 2022). Modellrechnungen prognostizieren für Deutschland, dass zukünftig mit einem Anstieg hitzebedingter Mortalität von 1 bis 6 Prozent pro einem Grad Celsius Temperaturanstieg zu rechnen ist, dies entspräche über 5.000 zusätzlichen Sterbefällen pro Jahr durch Hitze bereits bis Mitte dieses Jahrhunderts.</p><p>Der Wärmeinseleffekt: Mehr Tropennächte in Innenstädten</p><p>Eine Studie untersuchte die klimatischen Verhältnisse von vier Messstationen in Berlin für den Zeitraum 2001-2015 anhand der beiden Kenngrößen „Heiße Tage“ und „Tropennächte“. Während an den unterschiedlich gelegenen Stationen die Anzahl Heißer Tage vergleichbar hoch war, traten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ an der innerhalb dichter, innerstädtischer Bebauungsstrukturen gelegenen Station wesentlich häufiger (mehr als 3 mal so oft) auf, als auf Freiflächen (vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug &amp; Mücke 2018</a>). Eine Innenstadt speichert die Wärmestrahlung tagsüber und gibt sie nachts nur reduziert wieder ab. Die innerstädtische Minimaltemperatur kann während der Nacht um bis zu 10 Grad Celsius über der am Stadtrand liegen. Dies ist als städtischer Wärmeinseleffekt bekannt.</p><p>Hitzeperioden</p><p>Von besonderer gesundheitlicher Bedeutung sind zudem Perioden anhaltender Hitzebelastung (umgangssprachlich „Hitzewellen“), in denen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ in Kombination mit Tropennächten über einen längeren Zeitraum auftreten können. Sie sind gesundheitlich äußerst problematisch, da Menschen nicht nur tagsüber extremer Hitze ausgesetzt sind, sondern der Körper zusätzlich auch in den Nachtstunden durch eine hohe Innenraumtemperatur eines wärmegespeicherten Gebäudes thermophysiologisch belastet ist und sich wegen der fehlenden Nachtabkühlung nicht ausreichend gut erholen kann. Ein Vergleich von Messstellen des Deutschen Wetterdienstes (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠) in Hamburg, Berlin, Frankfurt/Main und München zeigt, dass beispielsweise während der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a>⁠ 2003 und 2015 in Frankfurt/Main 6 mehrtägige Phasen beobachtet wurden, an denen mindestens 3 aufeinanderfolgende Heiße Tage mit sich unmittelbar anschließenden Tropennächten kombiniert waren&nbsp;(vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug &amp; Mücke 2018</a>). Zu erwarten ist, dass mit einer weiteren Erwärmung des Klimas die Gesundheitsbelastung durch das gemeinsame Auftreten von Heißen Tagen und Tropennächten während länger anhaltender Hitzeperioden – wie sie zum Beispiel in den Sommern der Jahre 2003, 2006, 2015 und vor allem 2018 in Frankfurt am Main beobachtet werden konnten – auch in Zukunft zunehmen wird (siehe Abb. „Heiße Tage und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ 2001 bis 2020“). Davon werden insbesondere die in den Innenstädten (wie in Frankfurt am Main) lebenden Menschen betroffen sein. Eine Fortschreibung der Abbildung über das Jahr 2020 hinaus ist aktuell aus technischen Gründen leider nicht möglich.&nbsp;</p><p><em>Tipps zum Weiterlesen: </em></p><p><em>Winklmayr, C., Muthers, S., Niemann, H., Mücke, H-G, an der Heiden, M (2022): Hitzebedingte Mortalität in Deutschland zwischen 1992 und 2021. Dtsch Arztebl Int 2022; 119: 451-7; DOI: 10.3238/arztebl.m2022.0202</em></p><p><em>Bunz, M. &amp; Mücke, H.-G. (2017): ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ – physische und psychische Folgen. In: Bundesgesundheitsblatt 60, Heft 6, Juni 2017, S. 632-639.</em></p><p><em>Friedrich, K. Deutschländer, T., Kreienkamp, F., Leps, N., Mächel, H. und A. Walter (2023): Klimawandel und Extremwetterereignisse: Temperatur inklusive Hitzewellen. S. 47-56. In: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. 2. Auflage, 527 S., über 100 Abb., Berlin Heidelberg. ISBN 978-3-662-6669-8 (eBook): Open Access.</em></p>

Planungshinweiskarte Hitze und Trinkbrunnen Köln

<p>Die Planungshinweiskarte Hitze ist eine Klimaanalysekarte, welche die zukünftig zu erwartenden stadtklimatischen Gegebenheiten in Köln als flächenhafte Übersicht darstellt.</p> <p>Die Ausweisung der klimatisch aktiven Flächen ist nicht parzellenscharf und es bedarf bei großmaßstäbigen Planungen (z.B. Bebauungsplänen) einer zusätzlichen Auswertung der Grundlagendaten auf Detailebene.</p> <p>Grundlage für die Karte sind die Berechnungen der Anzahl der heißen Tage für die Periode 2021 bis 2050, die der Deutsche Wetterdienst mit dem Stadtklimamodell MUKLIMO_3 simuliert hat. Zur Erstellung der Karte wurde die MUKLIMO-3 Simulation basierend auf dem Regionalmodell CLM mit dem Emissionsszenario A1B ausgewählt. Für den Zeitraum 2021 bis 2050 zeigt sich im Vergleich mit dem Referenzzeitraum (1971 bis 2000) eine deutliche Zunahme der Hitzebelastung. Für die Stadt Köln bedeutet dies, dass längere Hitzeperioden mit Temperaturen über 25°C (Sommertage) und über 30°C (heiße Tage) vermehrt auftreten. Die Trinkbrunnen sind als Punktmarkierungen in der Karte dargestellt, die interaktiv angeklickt oder unten in der Detailansicht angeschaut werden können.</p>

Süddeutsches Klimabüro - Online-Befragung 'Wie gehen die Karlsruherinnen und Karlsruher mit Hitze und Hitzebelastung um?'

Im Juli und August 2013 kletterte die Temperatur in Karlsruhe an vielen Tagen über 30°C und an einigen Tagen auch über 35°C. Dazu befragte das Süddeutsche Klimabüro mit einem online-Fragebogen Bürgerinnen und Bürger Karlsruhes, wie sie mit Hitze und Hitzebelastung umgehen. Ziel: Die Ergebnisse der im Rahmen des Helmholtz-Verbunds regionale Klimaänderungen REKLIM durchgeführten Umfrage sollen helfen dazu beizutragen, Hitzebelastung im alltäglichen Leben besser zu verstehen und damit Maßnahmen zur Minderung von Hitzebelastung zu entwickeln. Geeignete Maßnahmen zum Umgang mit Hitze entwickeln bzw. vornehmen.

ANK-DAS-B.1: Nachhaltige, naturbasierte Landnutzung als Landwirtschaftskonzept der Zukunft zur Anpassung an die Folgen des Klimawandels, für natürlichen Klimaschutz und artenreiche Nutzflächen

Gesunde Mamas und Babies: Umsetzung und Evaluierung einer Strategie zur Anpassung an die Hitze für schwangere Frauen im ländlichen Norden Ghanas, Teilprojekt Uni Heidelberg

Gesunde Mamas und Babies: Umsetzung und Evaluierung einer Strategie zur Anpassung an die Hitze für schwangere Frauen im ländlichen Norden Ghanas, Teilprojekt Uni Halle

Forschergruppe (FOR) 2936: Klimawandel und Gesundheit in Afrika südlich der Sahara, Teilprojekt: Die Wirkungen von passiver Hauskühlung auf Gesundheit, Verhalten und Ökonomie im ländlichen Afrika

Anpassung ist unerlässlich, um die nachteiligen Auswirkungen extremer und weiterhin zunehmender Hitze auf die zu mindern. Die am wenigsten anpassungsfähigen Bevölkerungsgruppen und Gemeinschaften - insbesondere die Menschen in der Sahel-Region - sind weltweit auch den extremsten Hitzebelastungen ausgesetzt. In unserer Forschung in der ersten Phase der DFG-Forschergruppe „Klimawandel und Gesundheit“ haben wir festgestellt, dass reflektierende Dachbeschichtungen tagsüber die Dachtemperaturen um 10-15 ºC und die Innenlufttemperaturen um 2 ºC bis 3 ºC senken - ‚Cool Roofs‘ sind damit eine ideale Maßnahme zur Anpassung an den Klimawandel im ländlichen Burkina Faso und der Sahel-Region. Die Tagestemperaturabsenkungen halten jedoch nicht bis in die Nacht an. Unser Forschungsziel in dieser zweiten Phase der Forschergruppe ist es daher, optimale Strategien zur Reduzierung der Innentemperaturen während der kritischen nächtlichen Schlaf- und Ruhezeiten zu identifizieren. Um dieses Ziel zu erreichen, werden wir fünf spezifische Forschungsziele verfolgen: (1) Demonstrieren der technischen Machbarkeit von Kandidaten für Lüftungsansätze im Kontext der einheimischen Architektur und der lokalen Bedürfnisse im ländlichen Burkina Faso - hierzu werden wir quantitative Design- und Simulationsstudien verwenden, (2) Identifizieren der Wahrnehmungen und kulturellen Akzeptanz und Attraktivität verschiedener Lüftungstechnologien im ländlichen Burkina Faso - hierzu werden wir qualitative Designstudien verwenden, (3) Erläuterung der Mechanismen von Lüftungstechnologien mit und ohne ‚Cool roofs‘ im ländlichen Burkina Faso - hierzu werden wir matched-pair Mechanismusstudien verwenden, (4) Ermittlung der kausalen Wirkungen der Belüftung mit und ohne Kühldach auf Gesundheit und Verhalten im ländlichen Burkina Faso - hierzu werden wir eine randomisierte kontrollierte Studie verwenden, und (5) Ermittlung der Langzeitwirkungen von kühlen Dächern im ländlichen Burkina Faso auf Gesundheit und Wohlbefinden - hierzu werden wir ebenfalls eine randomisierte kontrollierte Studie verwenden. Unsere Forschung wird entscheidende Daten liefern, um klimagefährdete, ressourcenarme Bevölkerungsgruppen in Burkina Faso und der weiteren Sahel-Region bei der erfolgreichen Anpassung an den Klimawandel zu unterstützen.

Klimawandel auf globaler, nationaler, regionaler sowie lokaler Ebene Klimawandel Grundlagen Klimawandel auf globaler Ebene Klimawandel auf regionaler und lokaler Ebene Globale Klimamodelle Klimaszenarien

Der vom Menschen ausgelöste globale Klimawandel ist eine in der Fachwelt anerkannte Tatsache. Die ersten Folgen des Klimawandels sind in Sachsen-Anhalt bereits spürbar. Die Auswirkungen des Klimawandels wird man in Sachsen-Anhalt in den kommenden Jahrzehnten vermehrt zu spüren bekommen. Der Themenkomplex Klimawandel lässt sich generell in zwei Bereiche aufteilen: Die Klimaanalyse umfasst alle Auswertungen von Klimadaten in der Vergangenheit. Im Themenbereich Klimaprojektion werden mögliche Klimaentwicklungen in der Zukunft auf der Grundlage von Klimamodellrechnungen betrachtet. Bei der Klimaanalyse ist es wichtig, von heute beginnend in der Geschichte zurückzuschauen, um die Klimageschichte des Planeten bewerten zu können. Nur so können aktuelle und künftige Entwicklungen in die Klimageschichte eingeordnet und Extremereignisse bewertet werden. Unterschied zwischen Wetter, Witterung und Klima Wetter: Als Wetter wird der physikalische Zustand der Atmosphäre zu einem bestimmten Zeitpunkt oder in einem auch kürzeren Zeitraum an einem bestimmten Ort oder in einem Gebiet bezeichnet, wie er durch die meteorologischen Elemente und ihr Zusammenwirken gekennzeichnet ist. Witterung: Als Witterung wird der allgemeine, durchschnittliche oder auch vorherrschende Charakter des Wetterablaufs eines bestimmten Zeitraums (von einigen Tagen bis zu ganzen Jahreszeiten) bezeichnet. Klima: Das Klima ist definiert als die Zusammenfassung der Wettererscheinungen, die den mittleren Zustand der Atmosphäre an einem bestimmten Ort oder in einem mehr oder weniger großen Gebiet charakterisieren. Hierbei wird ein Zeitraum von mindestens 30 Jahren zugrunde gelegt. Die Weltorganisation für Meteorologie (World Meteorological Organisation - WMO) empfiehlt den Zeitraum 1961 bis 1990 als Klimareferenzperiode zur langfristigen Betrachtung der Entwicklungen des Klimawandels. Klimawandel: Als Klimawandel werden die langfristigen Veränderungen dieses mittleren Zustandes der Atmosphäre (Klima) bezeichnet. Dabei ist es unerheblich, ob die Veränderungen natürlichen Ursprungs sind oder nicht. Das Klima unterliegt verschiedenen Einflüssen wie bspw. der Sonnenaktivität und den Erdbahnparametern, sowie Vulkanausbrüchen oder der Plattentektonik aber auch dem Einfluss des Menschen. Dabei kann festgehalten werden: Die durch den Menschen hervorgerufene Klimaerwärmung seit Beginn der Industrialisierung ist wissenschaftlicher Konsens. Der Treibhauseffekt Der Treibhauseffekt ist ein auch ohne den Menschen vorkommendes Phänomen: Die Erdoberfläche strahlt langwellige Wärmestrahlung ab. Diese langwellige, nach oben gerichtete Strahlung wird durch Bestandteile der Atmosphäre, die Treibhausgase, absorbiert (aufgenommen) und wieder emittiert (abgegeben). Diese Strahlungsemission geschieht dabei in alle Richtungen, sodass die eigentlich nach oben gerichtete langwellige (also Wärme-)Strahlung zum Teil in der Atmosphäre gehalten wird. Diese erwärmt sich somit. Treibhausgase kommen natürlicher Weise in der Atmosphäre vor. Natürlich in der Atmosphäre vorkommende Treibhausgase sind bspw. Kohlenstoffdioxid (CO 2 ), Methan (CH 4 ), Lachgas (N 2 O) und Wasserdampf (H 2 O). Im Fall des Wasserdampfes verdeutlicht ein einfaches Beispiel den Effekt: In einer sternenklaren Nacht kühlt die Atmosphäre wesentlich schneller aus als bei bedeckten Verhältnissen. Die Erdatmosphäre schützt die Erde somit vor dem Auskühlen: im Gleichgewicht des Strahlungshaushalts ohne Atmosphäre läge die mittlere Erdoberflächentemperatur bei -18 °C. Ausgehend von einer globalen Mitteltemperatur von rund 15 °C wäre es ohne den Treibhauseffekt auf der Erde somit um ca. 33 Kelvin kälter. Die Konzentrationen der Treibhause CO 2 , CH 4 und N 2 O steigen seit Jahrzehnten durch den menschlichen Ausstoß an. In den letzten 60 Jahren hat die CO 2 -Konzentration um 25% zugenommen. Die Konzentration von Methan hat sich mehr als verdoppelt. Dabei gilt zu beachten, dass Methan eine deutlich stärkere Treibhauswirkung hat als CO 2 . Die Atmosphäre ist ein komplexes System. So hängen die verschiedenen physikalischen Größen und Vorgänge wie bspw. Temperatur, Verdunstung sowie Niederschlag/Wasserkreislauf miteinander zusammen. Verändert sich eine Variable (im Falle des Klimawandels die Temperatur), verändern sich auch die anderen Prozesse und Zustände der Atmosphäre. Weiterhin hängen die verschiedenen Komponenten des Klimasystems (Atmosphäre, Hydrosphäre, Kryosphäre, Biosphäre, Lithosphäre/ Pedosphäre) miteinander zusammen. Um nur einige der prominentesten Beispiele zu nennen: Die Temperaturerhöhung der Atmosphäre hat bspw. Auswirkungen auf den Meeresspiegel der Ozeane (Hydrosphäre; z. B. Abschmelzen der Gletscher (Kryosphäre) sowie Dichteabnahme und damit Ausdehnung des Meerwassers) oder den Säuregehalt des Ozeans. Dies wiederum führt zu Beeinflussung des Ökosystems Meer (Biosphäre; bspw. Absterben von Korallenriffen). Weiterhin ist hiervon auch direkt der Lebensraum des Menschen betroffen: Besonders Inselstaaten sind vom Meeresspiegelanstieg bedroht. Zudem bricht mit den absterbenden Korallenriffen ein bedeutsamer Küstenschutz weg. Die globale Lufttemperatur hat seit 1850 um 1,1 K zugenommen. 2023 war global das erste Jahre, dass mehr als 1,5 K wärmer war als vorindustriell (Quelle: https://climate.copernicus.eu/global-climate-highlights-2023 ). Aber auch die Meerestemperaturen steigen an und puffern so einen Teil der Erwärmung der Atmosphäre zunächst ab. Der Anstieg der Temperaturen führt aber sowohl ober, als auch unterhalb der Wasseroberfläche zu Veränderungen von Gletschern, Eisschilden, Strömungen, Flora, Fauna und vielem mehr. Besonders empfindliche Systeme drohen irreversibel geschädigt zu werden, mit Folgen für den ganzen Planeten. Die Rede ist von sogenannten Kipppunkten im Klimasystem der Erde. Die Schnelligkeit der Erwärmung und der damit einhergehenden Veränderungen stellt eine besondere Herausforderung dar. Aus diesen Gründen ist sowohl die Anpassung an bereits stattgefundene oder nicht mehr vermeidbare Klimaveränderungen zwingend nötig, als auch der Schutz des Klimas insgesamt, um noch weiterreichende Veränderungen zu verhindern. Der Klimawandel wirkt sich auch auf regionaler Ebene aus. So steigt bspw. schon heute die Hitzebelastung in mitteldeutschen Sommern. Weiterhin können sich die Niederschlagsverhältnisse innerhalb des Jahres verschieben bzw. durch stabile Wetterlagen kann es immer häufiger zu länger anhaltenden Witterungsverhältnissen kommen, die unter Umständen zu Dürre oder Hochwassergefahr führen. Das Mittel der Temperaturverteilung verschiebt sich in Richtung warm bei zunehmender Bandbreite mit den Hitzeextremen. Globale Klimamodelle sind komplexe physikalische Modelle, die das Klimasystem der Erde anhand physikalisch-numerischer Gleichungen computergestützt und zeitabhängig beschreiben. Kalibrierte Modelle ermöglichen unter definierten Annahmen über die zukünftige Treibhauskonzentrationsentwicklung die Simulation möglicher zukünftiger Klimaentwicklungen (siehe Klimaszenarien). Modelle und ihre Eigenschaften Man nutzt zur Berechnung des zukünftigen Klimas globale Zirkulationsmodelle (General Circulation Model bzw. Global Climate Model - GCMs). Globale Modelle stellen ein unverzichtbares Instrumentarium für voraussichtliche Veränderungen der Häufigkeit und Dauer von charakteristischen Großwetterlagen dar und besitzen eine horizontale Auflösung von ca. 200 km x 200 km Gitterabstand (IPCC). Zeitliche Entwicklung der Modelle Die Entwicklung der globalen Zirkulationsmodelle ist wesentlich an die Entwicklung der Computerkapazitäten gebunden. Erst die Fortschritte in der Rechenleistung großer Computeranlagen haben es ermöglicht, dass sich die Komplexität der Modelle, die Länge der Simulation und die räumliche Auflösung steigern ließen. Die ersten Modellrechnungen wurden mit reinen Atmosphärenmodellen durchgeführt, die aus Wettermodellen abgeleitet wurden. Seit den 1960er Jahren wurden Atmosphären- und Ozeanmodelle miteinander gekoppelt, zunächst mit einer sehr rudimentären Dynamik. In den folgenden Jahren wurden Modelle der Atmosphäre und des Ozeans getrennt weiterentwickelt. Seit den 1990er Jahren wurden immer mehr Komponenten des Klimasystems miteinbezogen und die Modelle wurden immer komplexer. So wurden Anfang der 1990er Jahre Modellrechnungen durchgeführt, die auch die Wirkung der in der Summe abkühlend wirkenden Aerosole berücksichtigten. Außerdem wurden Modelle für den ozeanischen und terrestrischen Kohlenstoffkreislauf entwickelt und in gekoppelten Simulationen für den Bericht des Weltklimarates IPCC von 2007 genutzt. Eine dynamische Vegetation und die Chemie der Atmosphäre sind weitere Bausteine der Modellentwicklung. Das Resultat sind sogenannte Erdsystemmodelle. In jüngster Zeit sind verbesserte biogeochemische Kreisläufe und dynamische Eisschilde, die mit Klimaänderungen in Wechselwirkung stehen, hinzugekommen. Das langfristige Ziel ist es, dass möglichst alle Komponenten des Klimasystems einschließlich ihrer Rückkopplungen und der externen Störungen simuliert werden können. Um Aussagen über das zukünftige Klima treffen zu können, werden Globale Klimamodelle in Verbindung mit Szenarien genutzt. Diese Klimaszenarien beinhalten Annahmen über die zukünftige Entwicklung von Treibhausgasen und ggf. die Gesellschaft. Sie stellen eine sogenannte Randbedingung von Klimamodellrechnungen für die Zukunft (= Klimaprojektionen) dar. Der 5. IPCC-Bericht verwendete Szenarien mit repräsentativen Konzentrationspfaden (RCP), die den möglichen zukünftigen Verlauf der absoluten Treibhausgaskonzentration in der Atmosphäre beschreiben. Im neueren 6. IPCC-Bericht fanden gemeinsame sozioökonomische Entwicklungspfade (Shared Socioeconomic Pathways, SSP) Anwendungen, die stärker den möglichen künftigen Einfluss der gesellschaftlichen und ökonomischen Entwicklung der Menschheit als Ausgangspunkt für den Ausstoß von Treibhausgasen betrachten. Die unterschiedlichen RCP Szenarien sind in der Abbildung dargestellt. Der Zahlenwert hinter dem RCP entspricht dem zusätzlichen Strahlungsantrieb. Der anthropogene Strahlungsantrieb ist hierbei ein Maß für den Einfluss, den ein einzelner Faktor auf die Veränderung des Strahlungshaushalts der Atmosphäre und damit auf den Klimawandel hat. Er wird in Watt pro Quadratmeter angegeben. Ein positiver Strahlungsantrieb, z.B. durch die zunehmende Konzentration langlebiger Treibhausgase, führt zu einer Erwärmung der bodennahen Luftschicht. Ein negativer, z.B. durch die Zunahme von Aerosolen, hingegen bewirkt eine Abkühlung ( weitere Informationen ). Bei RCP2.6 würden also 2,6 W/m² mehr in der Atmosphäre verbleiben. Das Szenario des RCP2.6 ist dabei das Szenario mit konsequentem globalem Klimaschutz, dass das Ziel von 1,5 K Erwärmung bis 2100 einhalten könnte. Mit moderatem Klimaschutz rechnet das Szenario RCP4.5, hier würde man global rund 2 K Erwärmung bis 2100 erreichen. Das RCP6.0 ist das Szenario mit wenig globalem Klimaschutz. Hierbei würde sich die Erwärmung bis 2100 auf etwa 3 K belaufen. Ohne Klimaschutz (RCP8.5) würde die Treibhausgaskonzentration in der Atmosphäre weiter ungebremst zunehmen. Die globale Temperatur würde bis 2100 um mehr als 4 K zunehmen mit entsprechend verheerenden Folgen für unseren Planeten. Die neuere Szenarienfamilie des 6. IPCC Berichts teilt sich recht ähnlich zu der Szenarienfamilie der RCPs auf, auch wenn sich diese im Detail unterscheiden. So wurden zunächst Narrative der sozioökonomischen Entwicklung aufgespannt, welche von „Nachhaltigkeit“ bis „Fossile Entwicklung“ reichen. Für diese verschiedenen Narrative (SSP1 bis SSP5) können verschiedene Strahlungsantriebe eintreten. Nach dem nachhaltigen Szenario mit konsequentem globalem Klimaschutz (SSP1-2.6) kann das 2-Grad-Ziel erreicht werden. Das Szenario SSP2-4.5 mit moderatem Klimaschutz geht von einer Erwärmung von knapp 3 K bis Ende des Jahrhunderts aus. Im Falle des SSP3-7.0 wird von einer Zunahme von Konflikten auf der Erde ausgegangen, die globalen Klimaschutz deutlich erschweren. Demnach würde die globale Temperatur um etwa 4 K ggü. dem vorindustriellen Wert ansteigen. Im SSP5-8.5 gelingt es der Menschheit nicht, Klimaschutz bis zum Ende des Jahrhunderts global umzusetzen. Dies führt zu einer Erwärmung von etwa 5 K. Die Szenarien zeigen, dass konsequenter globaler Klimaschutz bis hinunter auf die Ebene der Bundesländer in Deutschland alternativlos ist, wenn man tiefgreifende Veränderungen vermeiden will. Weiterhin stellen die Szenarien und Klimaprojektionen die Basis für die zu entwickelnden Maßnahmenkonzepte zur Anpassung an den zu erwartenden Klimawandel dar. Letzte Aktualisierung: 18.09.2024

Ergebnisse der Status-Quo-Analyse

Die Status-Quo-Analyse ist Ende 2024 abgeschlossen worden. Sie umfasst einen detaillierten Blick auf die verkehrliche und städtebauliche Situation in der Berliner Mitte. Im Folgenden sind zentrale Analyseergebnisse in den Kategorien Städtebau Verkehrsnetze und Parken aufbereitet. Der Masterplan für die Berliner Mitte umfasst einen zentralen Bereich Berlins, der von einer hohen Nutzungsmischung geprägt ist. An kaum einem anderen Ort in Berlin, überlagern sich so vielfältige Zielorte – von Handel, Gastronomie und Gewerbe über Frei- und Grünflächen, bis hin zu touristischen und historischen Hotspots. Daneben verleiht auch die unmittelbare Nähe zum Berliner Regierungsviertel dem Gebiet eine hohe gesamtstädtische und nationale Bedeutung. Diese Gegebenheiten führen zu einer hohen Anziehungskraft des Gebietes, womit eine hohe Verkehrsbelastung und Flächenkonkurrenz einhergeht. Darüber hinaus ist das Gebiet auch durch eine relevante Wohnnutzung geprägt – ein hoher Anteil findet sich entlang der Leipziger Straße, aber auch in größeren Bereichen im Nordosten des Untersuchungsgebiets. Hinsichtlich Einzelhandel und Gastronomie hebt sich die Friedrichstraße mit einer hohen Dichte an Gastronomie- und Einzelhandelsbetrieben deutlich ab. Auch die Straßen zwischen Alexanderplatz und Rosenthaler Platz weisen viele Restaurants, Cafés und Geschäfte auf. Die Mall of Berlin im Westen des Untersuchungsgebiets ist ein wichtiger Einzelhandelsstandort. Zudem ist nahezu das gesamte Gebiet nördlich der Spree von gastronomischen Einrichtungen geprägt. Die wichtigsten touristischen Ziele liegen vor allem zwischen den beiden Hauptachsen Unter den Linden und Leipziger Straße, mit einer besonders wichtigen Achse vom Brandenburger Tor bis zum Alexanderplatz. Aufgrund dieser Nutzungsvielfalt ist es wichtig, Nutzergruppen zu definieren, um daraus differenzierte Anforderungen an die Verkehrsinfrastruktur und die Verkehrsangebote abzuleiten. Diese können dann auf die einzelnen Schwerpunkträume übertragen werden, um allen Bedürfnissen bestmöglich gerecht zu werden und die Erreichbarkeit der Ziele zu gewährleisten. Wie in vielen europäischen Städten, ist auch in Berlin das Stadtzentrum durch einen hohen Versiegelungsgrad geprägt. Gebäude und Verkehrsflächen nehmen gegenüber Frei- und Grünflächen einen deutlichen höheren Anteil ein. Auch auf Grund historischer städtebaulicher Erwägung gibt es in vielen Straßen in der Friedrichstadt keine Straßenbäume. Mit zunehmender Versiegelung reduziert sich die Fähigkeit, das Mikroklima bei Hitzeereignissen zu kühlen. Es bildet sich auch deutlich weniger Grundwasser, da das Niederschlagswasser nicht oder nur erschwert dem Boden zugeführt werden kann. Diese Gegebenheiten in Verbindung mit den querenden Hauptverkehrsachsen und dem vergleichsweise geringen Anteil an blaugrüner Infrastruktur (d. h. Grün- und Wasserflächen) führen in bestimmten Bereichen zu deutlich spürbaren Hitzebelastungen. Durch eine Vernetzung und Stärkung der vorhandenen Grün- und Freiflächen kann dem jedoch gut begegnet werden. Darüber hinaus entstehen die Lärm- und Luftschadstoffemissionen im Gebiet in relevantem Umfang durch den Verkehr. Besonders die Entzerrung zwischen Lärmquelle und Aufenthalts- und Wohnbereichen gilt es weiter zu forcieren. Dies wird ein wesentlicher Aspekt der Verkehrsnetzgestaltung sein. Die Lärmemissionen des Schienenverkehrs sind im Gebiet nur bedingt vermeidbar und in erster Linie durch bauliche Maßnahmen (z.B. Schallschutz) zu reduzieren. Die Berliner Mitte dient als Wohn- und Arbeitsort, als touristisches Zentrum Berlins und für vielfältige weitere Wegezwecke. Dementsprechend hoch ist die Nachfrage an Stellplätzen für Pkw und Fahrräder. Hinzu kommt der touristische Reisebusverkehr mit seinem Bedarf an Parkplätzen in fußläufiger Entfernung zu den Sehenswürdigkeiten. Auch für Liefer- und Ladeverkehr, Taxis und Elektrofahrzeuge gibt es Halteflächenbedarf und bereits ausgewiesene Stellplätze. Hinsichtlich der Kfz-Parkstände ist im Untersuchungsgebiet bereits heute ein hoher Parkdruck festzustellen. Teil einer Parkraumbewirtschaftung sind derweil nur die Gebiete im Bezirk Mitte. Eine Besonderheit im Betrachtungsgebiet sind zudem die relativ hohe Dichte und Kapazität von privaten und halb-öffentlichen Parkanlagen. Hier bieten sich vielfach umfangreiche freie Kapazitäten zu allen Tageszeiten. Preislich sind die Parkhäuser in der Regel bereits günstiger als das Parken im öffentlichen Straßenraum. Potenzialflächen für die Verlagerung oder Umnutzung von Parkständen können so an verschiedenen Lagen vermutlich gut kompensiert werden. Auch das Fahrradparken ist flächendeckend vorhanden. Größere Lücken im Untersuchungsgebiet gibt es nicht. Im Rahmen der Analyse wurden die Vorrangnetze der einzelnen Verkehrsträger zusammengestellt und überlagert. Durch die Betrachtung weiterer Informationen zu den Verkehrsnetzen wie Verkehrsstärken, -unfällen und ergänzenden Mobilitätsangeboten und -infrastrukturen konnte die Analyse vertieft werden. Für den motorisierten Individualverkehr (MIV), den ÖPNV und das Fahrrad gibt es aktuelle Netzhierarchien. Für das mit dem Fußverkehrsplan noch zu entwickelnde Fußverkehrsnetz wurde ein Arbeitsstand zur Priorisierung der Fußverkehrsinfrastruktur herangezogen, der allerdings noch kein zusammenhängendes Netz mit Verbindungsachsen abbildet. Bei der Betrachtung der einzelnen Verkehrsträger wird deutlich, dass insbesondere das geplante Radvorrang- und Ergänzungsnetz aktuell noch in der Umsetzung ist. Durch verschiedenen Maßnahmen auf Senats- und bezirklicher Ebene entsteht in den nächsten Jahren ein dichtes Netz an Radverbindungen. So kann für verschiedene Nutzendengruppen das Fahrrad eine attraktive Mobilitätsoption zum Erreichen der Berliner Mitte werden bzw. bleiben. Im Untersuchungsraum ist schon jetzt ein flächendeckendes Angebot des ÖPNV mit zahlreichen schienengebundenen Verkehren sowie ergänzenden Buslinien vorhanden. Eine Ausweitung der Kapazitäten sollte bedarfsgerecht erfolgen und zur Attraktivität des Umweltverbundes beitragen. Im Bereich Shared Mobility ist das Untersuchungsgebiet gut abgedeckt. So findet sich insbesondere im Stadtteil Mitte eine besonders hohe Dichte an Jelbi-Punkten mit Abstellflächen für die Mikromobilität. Darüber hinaus befinden sich die Stationen in unmittelbarer Nähe von U-Bahn-, S-Bahn- und Bushaltestellen, sodass der Umstieg vom öffentlichen Verkehr auf die Verkehrsmittel der geteilten Mobilität gewährleistet ist. Der Kfz-Verkehr im Untersuchungsgebiet ist stark ausgeprägt. Aufgrund der zentralen Lage innerhalb der Stadt und der übergeordneten Zentrumsfunktion wird das Gebiet von zwei Bundesstraßen sowie großen übergeordneten Straßenverbindungen durchzogen, die den Osten und Westen sowie den Norden und Süden der Stadt miteinander verbinden. Die Verkehrsnetze überlagern sich an einigen Stellen im Untersuchungsgebiet. In Kombination mit der Flächenverfügbarkeit kann es zu einem hohen Nutzungsdruck bzw. zukünftig Flächenknappheit kommen. Eine Optimierung muss in Abwägung der Belange des Städtebaus und des Ruhenden Verkehrs integriert erfolgen.

Indikator: Heiße Tage

<p>Die wichtigsten Fakten</p><p><ul><li>2003, 2015, 2018 und 2022 waren, gemittelt über die gesamte Fläche Deutschlands, die Jahre mit der höchsten Zahl Heißer Tage.</li><li>Trotz starker Schwankungen zwischen den Jahren ist der Trend insgesamt deutlich steigend.</li><li>Durch den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ ist in den nächsten Jahrzehnten mit mehr Heißen Tagen in den Sommermonaten zu rechnen.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Steigende Temperaturen können sich nachteilig auf die Gesundheit des Menschen auswirken. Der Deutsche Wetterdienst hat als Kenngröße den „Heißen Tag“ definiert: Jeder Tag, dessen höchste Temperatur bei 30 °C oder höher liegt, zählt danach als ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heier_Tag#alphabar">Heißer Tag</a>⁠.</p><p>Hohe Lufttemperaturen belasten den menschlichen Körper durch die Hitze nicht nur direkt, wie z.B. in Form von Kreislaufproblemen. Eine heiße ⁠Witterung⁠ kann auch Verunreinigungen der Atemluft auslösen, die wiederum Atemwegs- und Herz-Kreislauf- Erkrankungen verstärken. So begünstigt eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Bildung von Ozon in Bodennähe, welches die Augen und Atemwege reizt. Diese Belastung kann bestehende Krankheiten der Atemwege verschlimmern und auch allergische Reaktionen auslösen.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Im Jahr 2025 gab es gemittelt über die Fläche Deutschlands etwa 11,1 ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠, an denen Temperaturen von 30 °C oder mehr gemessen wurden.</p><p>Besonders hoch war die Belastung durch Hitze neben 2022 in den Jahren 2003, 2015 und 2018: In diesen Jahren gab es in Deutschland gemittelt zwischen 18 und 20 Heiße Tage. Nach Anzahl der Heißen Tage wurden die zehn wärmsten Jahre alle seit 1994 registriert. Zwar schwanken die Jahreswerte dieses Indikators stark, insgesamt ist der Trend seit Beginn der Aufzeichnungen aber deutlich steigend.</p><p>Klimamodellierungen zeigen, dass in Deutschland zukünftig mit länger anhaltenden Hitzeperioden und somit einer steigenden Anzahl Heißer Tage zu rechnen ist.</p><p>Wie wird der Indikator berechnet?</p><p>Die Temperaturmessungen der Messstationen des <a href="https://www.dwd.de/DE/klimaumwelt/klimaueberwachung/klimaueberwachung.html;jsessionid=B67BF1D0566D6DE0FF14DA87EDEC1075.live21062">Deutschen Wetterdienstes</a> (DWD) sind die Grundlage des Indikators. Für Flächen, die nicht durch Messstationen abgedeckt sind, müssen sowohl die Temperaturwerte wie auch Kennwerte berechnet werden. Im Ergebnis kann die Verteilung in einem Raster (1 mal 1 Kilometer) dargestellt werden. Für jeden Rasterpunkt wird eine Jahressumme der Heißen Tage berechnet. Der Durchschnitt der Jahreswerte aller Rasterpunkte bildet den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ (Gebietsmittel). Weitere Informationen zum Berechnungsverfahren finden Sie in einem <a href="http://www.dwd.de/DE/leistungen/pbfb_verlag_berichte/pdf_einzelbaende/193_pdf.pdf">Bericht des DWD</a> (Müller-Westermeier 1995).</p><p><strong>Ausführliche Informationen zum Thema finden Sie in den Daten-Artikeln <a href="https://www.umweltbundesamt.de/daten/klima/trends-der-lufttemperatur">"Trends der Lufttemperatur"</a> und <a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-hitze">"Gesundheitsrisiken durch Hitze"</a>.<br></strong></p>

1 2 3 4 512 13 14