Modellierungsdaten zur mittleren Anzahl an Stunden mit Hitzestress pro Jahr (Mittelwert der Jahre 2019-2022). Hitzestress wird hierbei mit dem Universal Thermal Climate Index (UTCI) dargestellt und 26°C UTCI als Grenzwert genutzt. Der UTCI kombiniert Daten der Lufttemperatur, -feuchte, Windgeschwindigkeit und Strahlung zu einem Werte der "gefühlten" Temperatur. Alle Variablen des UTCI wurden mit Hilfe von KI auf unterschiedlichen räumlichen Auflösungen berechnet und gegen ein Messnetz validiert. Mehr Informationen zu den Modellen und Daten unter https://doi.org/10.5194/gmd-17-1667-2024. Die Berechnung der Daten erfolgte 2024 - eine Aktualisierung ist nicht geplant. Die Daten sind OpenData - Namensnennung: "Professur für Meteorologie, Universität Freiburg".
Das Projekt "Nachwuchsgruppen Klima, Umwelt und Gesundheit: Gesetzmäßigkeiten pandemischer Dynamiken im sich wandelnden Klima der Erde, Teilprojekt 1: Anfälligkeit pandemischer Dynamiken gegenüber dem Klimawandel" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Robert Koch-Institut.
Das Projekt "Kleinräumige Erhebung relevanter Bodenkennwerte durch ein verfahrenstechnisch integriertes Bodensensorsystem und die KI-basierte Datenauswertung als Basis für ein klimaresilientes, kleinräumigspezifisches Pflanzenbausystem, Teilprojekt D" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Amazonen-Werke H. Dreyer SE & Co. KG.Die Folgen des Klimawandels, z.B. Starkregenereignisse, Hitzeperioden, Trockenheit und Dürre haben negative Auswirkungen auf die Pflanzenproduktion. Es gilt diese negativen Folgen des Klimawandels bei der Pflanzenproduktion durch eine klima-angepasste Produktionsweise abzumildern. Für die Landwirt:innen gilt es Maßnahmen zu ergreifen, um den Pflanzenbau klimaresilient zu gestalten. Mögliche Maßnahmen sind variable Aussaattiefe, Aussaatstärke, Sortenwahl - trockenheitstolerante oder ertragreiche Sorten -, Düngeintensität, Pflanzenschutz-strategie oder alternative Nutzung auf Teilflächenbasis. Für die Umsetzung solcher Maßnahmen werden praxistauglich-aufbereitete, kleinräumige und pflanzenbauliche relevante Bodeninformationen benötigt, um den Pflanzenbauer bei einer Entscheidungsfindung für eine Klimanpassungsstrategien zu unterstützen. Für die Landwirt:innen besteht zur Zeit die Herausforderung diese entsprechenden kleinräumige und pflanzenbauliche-relevante Bodeninformationen für solche eine Nutzung zu erhalten bzw. anwenden zu können. In soil4climate werden kleinräumige Bodeninformationen erfasst und in praxis-relevante digitale Bodenkarten für die Bewirtschaftung ausgegeben. Dazu wird ein geoelektrisches Messsystem in einen handelsüblichen Grubber implementiert mit dem Ziel sehr kleinräumig Unterschiede im Prozess (und damit ohne Mehraufwand für den Landwirt) zu kartieren. Neben dieser Datenquelle werden weitere relevante Datenquellen (bspw. Schlepper-, Drohnen- und Satellitendaten) herangezogen, um homogene kleinräumige Strukturen im Boden zu identifizieren. Die Erstellung der Bodenkarten wird sowohl automatisch, KI-gestützt als auch manuell erfolgen, so dass eine Evaluierung der KI-gestützten Kartenerstellung möglich ist. Diese Evaluierung wird durch Feldtest und Laborversuche in Interaktion mit Praktikern und Experten im Projekt realisiert.
Das Projekt "Kleinräumige Erhebung relevanter Bodenkennwerte durch ein verfahrenstechnisch integriertes Bodensensorsystem und die KI-basierte Datenauswertung als Basis für ein klimaresilientes, kleinräumigspezifisches Pflanzenbausystem" wird/wurde ausgeführt durch: Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Pflanzenbau und Bodenkunde.Die Folgen des Klimawandels, z.B. Starkregenereignisse, Hitzeperioden, Trockenheit und Dürre haben negative Auswirkungen auf die Pflanzenproduktion. Es gilt diese negativen Folgen des Klimawandels bei der Pflanzenproduktion durch eine klima-angepasste Produktionsweise abzumildern. Für die Landwirt:innen gilt es Maßnahmen zu ergreifen, um den Pflanzenbau klimaresilient zu gestalten. Mögliche Maßnahmen sind variable Aussaattiefe, Aussaatstärke, Sortenwahl - trockenheitstolerante oder ertragreiche Sorten - , Düngeintensität, Pflanzenschutz-strategie oder alternative Nutzung auf Teilflächenbasis. Für die Umsetzung solcher Maßnahmen werden praxistauglich-aufbereitete, kleinräumige und pflanzenbauliche-relevante Bodeninformationen benötigt, um den Pflanzenbauer bei einer Entscheidungsfindung für eine Klimanpassungsstrategien zu unterstützen. Für die Landwirt:innen besteht zur Zeit die Herausforderung diese entsprechenden kleinräumige und pflanzenbauliche-relevante Bodeninformationen für solche eine Nutzung zu erhalten bzw. anwenden zu können. In soil4climate werden kleinräumige Bodeninformationen erfasst und in praxis-relevante digitale Bodenkarten für die Bewirtschaftung ausgegeben. Dazu wird ein geoelektrisches Messsystem in einen handelsüblichen Grubber implementiert mit dem Ziel sehr kleinräumig Unterschiede im Prozess (und damit ohne Mehraufwand für den Landwirt) zu kartieren. Neben dieser Datenquelle werden weitere relevante Datenquellen (bspw. Schlepper-, Drohnen- und Satellitendaten) herangezogen, um homogene kleinräumige Strukturen im Boden zu identifizieren. Die Erstellung der Bodenkarten wird sowohl automatisch, KI-gestützt als auch manuell erfolgen, so dass eine Evaluierung der KI-gestützten Kartenerstellung möglich ist. Diese Evaluierung wird durch Feldtest und Laborversuche in Interaktion mit Praktikern und Experten im Projekt realisiert.
Im Rahmen des Kölner Hitzeportals wird eine digitale Stadtkarte bereitgestellt, in die Bürger*innen ihre „Kühlen Orte“ eintragen können, welche einen angenehmen Aufenthalt bei sommerlicher Hitze bieten.
Im Rahmen des Kölner Hitzeportals wird eine digitale Stadtkarte bereitgestellt, in die Bürger*innen ihre „Kühlen Orte“ eintragen können, welche einen angenehmen Aufenthalt bei sommerlicher Hitze bieten.
Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.
Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.
Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.
Der StEP Klima 2.0 widmet sich den räumlichen und stadtplanerischen Ansätzen zum Umgang mit dem Klimawandel. Er beschreibt über ein räumliches Leitbild und vier Handlungsansätze die räumlichen Prioritäten zur Klimaanpassung: für Bestand und Neubau, für Grün- und Freiflächen, für Synergien zwischen Stadtentwicklung und Wasser sowie mit Blick auf Starkregen und Hochwasserschutz. Und er stellt dar, wo und wie die Stadt durch blau-grüne Maßnahmen zu kühlen ist, wo Entlastungs- und Potenzialräume liegen, in denen sich durch Stadtentwicklungsprojekte Synergien für den Wasserhaushalt erschließen lassen.
Origin | Count |
---|---|
Bund | 535 |
Europa | 7 |
Kommune | 9 |
Land | 155 |
Wissenschaft | 13 |
Zivilgesellschaft | 3 |
Type | Count |
---|---|
Ereignis | 12 |
Förderprogramm | 282 |
Lehrmaterial | 1 |
Text | 278 |
Tonaufnahmen | 1 |
Umweltprüfung | 1 |
unbekannt | 104 |
License | Count |
---|---|
geschlossen | 327 |
offen | 334 |
unbekannt | 16 |
Language | Count |
---|---|
Deutsch | 625 |
Englisch | 120 |
andere | 4 |
Resource type | Count |
---|---|
Archiv | 13 |
Bild | 17 |
Datei | 20 |
Dokument | 124 |
Keine | 323 |
Multimedia | 3 |
Unbekannt | 5 |
Webdienst | 17 |
Webseite | 300 |
Topic | Count |
---|---|
Boden | 594 |
Lebewesen & Lebensräume | 631 |
Luft | 677 |
Mensch & Umwelt | 677 |
Wasser | 576 |
Weitere | 668 |