Ziel unseres Projekts ist es zu verstehen wie sich extreme Hochwasser von kleinen Hochwassern unterscheiden und wie ausgehend von kleinen Hochwassern extrapoliert werden kann. Wir untersuchen Mechanismen und Prozessinteraktionen die 'heavy tail' Hochwasserwahrscheinlichkeitsverteilungen generieren. Außerdem untersuchen wir Schwellwertprozesse und andere Mechanismen die zu Nichtlinearitäten führen wenn sich die Größenordnung des Hochwassers ändert. Insbesondere werden auch die Vorbedingungen und Konsequenzen von Hochwasserwellenänderungen, z.B. Überlagerungen untersucht. Die Analysen beinhalten die gesamte Hochwasserprozesskaskade. Wir werden die Charakteristika der größten Hochwasser denen der restlichen, kleineren Hochwasser gegenüberstellen um zu verstehen, ob große Hochwasser durch spezifische Prozesse ausgelöst und beeinflusst werden oder durch große Varianten derselben Prozesse. Die folgenden Forschungsfragen sollen beantwortet werden: Auf welche Weise steht das 'upper tail' Verhalten von Hochwasserwahrscheinlichkeitsverteilungen in Beziehung zu Einzugsgebiets- und Ereignischarakteristika? Welche Mechanismen und Prozessinteraktionen führen zu 'heavy tails' (endlastigen Hochwasserwahrscheinlichkeitsverteilungen)? Wie führen hochwasserauslösende Bedingungen (raum-zeitliche Niederschlagsmuster, Topographie, Hochwassertypen) und Interaktionen zwischen Flusslauf und Überschwemmungsflächen (Abflussverhalten, Rückhaltung, Deichbrüche) zu unterschiedlichen Hochwasserwellencharakteristika hinsichtlich Spitzenabfluss, Volumen, Wellenablaufzeiten, und zu verschiedensten Wellenveränderungen? Wie entwickeln sich oder verflüchtigen sich solche Muster von kleinen zu großen Hochwassern? Entstehen große Hochwasser durch andere Mechanismen als kleine Hochwasser? Wie verändern sich das Ausmaß und die Ursachen von Nichtlinearitäten der Prozesse mit steigender Hochwasserstärke? Was ist die spezifische Rolle von Schwellwertprozessen für die Entwicklung von extremen Hochwassern?
Temperaturkarten des Bayerischen Geothermieatlas (Stand Oktober 2022) Temperaturverteilung, Temperatur-Isotherme und Grenze Aussagegebiet mit einer Standardabweichung der Temperaturwerte von maximal +-10 °C (nach Legende) in 3500 m unter NHN; Temperaturangaben in °C Die Temperaturkarten stellen eine interpolierte Temperaturverteilung dar, die auf den derzeit vorhandenen Daten in der jeweiligen Tiefe basiert. Neue Daten können die Temperaturverteilung verändern. Es erfolgte keine Extrapolation von Temperaturdaten in die nächsttiefere Temperaturkarte. Dies hat zur Folge, dass in manchen Bereichen scheinbar keine Temperaturzunahme oder sogar eine scheinbare Temperaturabnahme mit der Tiefe zu verzeichnen ist. Es wird daher dringend empfohlen, bei der Bewertung eines potenziellen Standortes auch die darüber liegenden Temperaturkarten zu berücksichtigen. Vor allem in größeren Tiefen kann die dargestellte Temperaturverteilung daher nur erste Hinweise auf den zu erwartenden Temperaturbereich geben. Die Karten zur Temperaturverteilung im Untergrund ermöglichen daher nur eine erste Abschätzung der zu erwartenden Temperaturen. Sie können damit erste Anhaltspunkte geben, an welchen Standorten eine hydrothermale Wärmeversorgung, eine hydrothermale Stromerzeugung oder auch eine balneologische Nutzung sinnvoll sein kann. Die Temperaturkarten können jedoch keinesfalls detaillierte, standortspezifische Voruntersuchungen ersetzen. Hierbei müssen alle verfügbaren Temperaturinformationen im Umfeld des geplanten Standortes bewertet und gegebenenfalls auch in die Tiefe extrapoliert werden. Geometrien und Legendeneinheiten sind für den Übersichtsmaßstab 1:500 000 bzw. 1:250 000 konzipiert und i. d. R. stark generalisiert. Die Karten sind als Grundlage für großräumige Betrachtungen vorgesehen. Die maßstabsbezogene Aussagegenauigkeit ändert sich durch die maßstabsunabhängigen Visualisierungsmöglichkeiten digitaler Kartenwerke nicht. Für weitergehende Interpretationen, die das Kartenwerk mit anderen räumlichen Datensätzen kombinieren bzw. verschneiden, ist zu beachten, dass eine Verschneidung räumlicher Daten stark unterschiedlicher Auflösung bzw. unterschiedlicher Zielmaßstäbe oder verschiedener Art der Attribuierung zu unplausiblen oder schwer interpretierbaren Ergebnissen führen kann.
Das Saarland verfügt über mehrere Zählstellen auf Bundesstraßen und Landstraßen. Die erhobenen Daten dienen der Hochrechnung des durchschnittlichen täglichen Verkehrs (DTV) und bieten daher eine wichtige Grundlage für verkehrs- oder bautechnische Entscheidungen und Maßnahmen. Attribute: DTV: Gesamtverkehr DTV (Kfz / 24h) SV: Schwerverkehr DTV (Kfz / 24h)* TKZST: Zählstellennummer * Schwerverkehr = Busse, LKW mit mehr als 3,5 t zul. Gesamtgewicht Zählstellen, von denen Schätzwerte wegen Vollsperrung und nicht repräsentative Werte wegen Baustellen vorliegen, werden im Geoportal nur als Punkt ohne Informationen dargestellt.
Confronting Climate Change is one of the paramount societal challenges of our time. The main cause for global warming is the increase of anthropogenic greenhouse gases in the Earth's atmosphere. Together, carbon dioxide and methane, being the two most important greenhouse gases, globally contribute to about 81% of the anthropogenic radiative forcing. However, there are still significant deficits in the knowledge about the budgets of these two major greenhouse gases such that the ability to accurately predict our future climate remains substantially compromised. Different feedback mechanisms which are insufficiently understood have significant impact on the quality of climate projections. In order to accurately predict future climate of our planet and support observing emission targets in the framework of international agreements, the investigation of sources and sinks of the greenhouse gases and their feedback mechanisms is indispensable. In the past years, inverse modelling has emerged as a key method for obtaining quantitative information on the sources and sinks of the greenhouse gases. However, this technique requires the availability of sufficient amounts of precise and independent data on various spatial scales. Therefore, observing the atmospheric concentrations of the greenhouse gases is of significant importance for this purpose. In contrast to point measurements, airborne instruments are able to provide regional-scale data of greenhouse gases which are urgently required, though currently lacking. Providing such data from remote sensing instruments supported by the best currently available in-situ sensors, and additionally comparing the results of the greenhouse gas columns retrieved from aircraft to the network of ground-based stations is the mission goal of the HALO CoMet campaign. The overarching objective of HALO CoMet is to improve our understanding and to better quantify the carbon dioxide and methane cycles. Through analysing the CoMet data, scientists will accumulate new knowledge on the global distribution and temporal variation of the greenhouse gases. These findings will help to better understand the global carbon cycle and its influence on climate. These new findings will be utilized for predicting future climate change and assessing its impact. Within the frame of CoMet and due to the operational possibilities we will concentrate on small to sub-continental scales. This does not only allow to identify local emission sources of greenhouse gases, but also opens up the opportunity to use important remote sensing and in-situ data information for the inverse modelling approach for regional budgeting. The project also aims at developing new methodologies for greenhouse gas measurements, and promotes technological developments necessary for future Earth-observing satellites.
Das Forschungsprojekt ist eingebettet in den Sonderforschungsbereich SFB 607. Die Untersuchung des Wachstums unter individuellen Umweltbedingungen von Buchen und Fichten in Mischung wird im Teilprojekt B1 des Sonderforschungsbereichs 607: 'Wachstum oder Parasitenabwehr?' durchgeführt. Der SFB läuft seit Juli 1998, hat seine erste Projektphase im Jahre 2001 abgeschlossen und ist für mindestens zehn Jahre konzipiert. Aufgabe ist es, die allometrische Beziehungen zwischen Kronendimension und Biomasseverteilung in Abhängigkeit vom Standraum und den Umweltbedingungen für Mischbestände (Buche, Fichte) unterschiedlichen Alters und auf unterschiedlichen Standorten zu beschreiben. Damit soll 1. die Hochrechnung auf Dimensions- und Biomassegrößen auf der Grundlage von verfügbaren Bestandesinformationen ermöglicht werden (durch destruktive Probenahme, BHD- und Höhenmessungen) und 2. die Auswirkungen von Stressfaktoren auf die allometrischen Verhältnisse von einzelnen Bäumen und damit auf die Allokation eingeschätzt werden (mit Hilfe hochauflösender Dendrometer und Kronenablotungen). Das Projekt B1 befindet sich bereits in der vierten Phase. Bisher wurde im Projekt B1 die Allometrie als Resultat der pflanzeninternen Steuerung der Allokation untersucht. Auf Individuenebene wurden Allometrie und ihre Veränderung für verschiedene Baumarten in verschiedenen ontogenetischen Stadien untersucht. Auf Bestandesebene wurden die self-thinning-Linien von Yoda und Reineke für krautige bzw. holzige Pflanzenbestände analysiert. Bisherige Allometriebestimmungen erbrachten für diese Arten zwar ähnliche Größenordnung aber auch charakteristische Unterschiede, die Ausdruck spezifischer Strategien der Raumbesetzung und -ausbeutung widerspiegeln. Die bisher vereinzelten Auswertungen sollen in Phase IV in eine übergreifende Analyse (versch. Arten, ontogenetische Stadien, Konkurrenzsituationen, Störfaktoren) der Allometrie auf Pflanzen- und Bestandesebene münden.
Ziel des Projekts KIMBIF ist die Hochrechnung (Extrapolation) und Prognose (Forecast) der Erzeugungsleistung von Photovoltaik(PV)-Anlagen mit bifazialen PV-Modulen. Durch die Nutzung des auf der Rückseite einfallenden Lichts erreicht einen höheren Ertrag im Vergleich zu monofazialen Modulen. Die Einstrahlungsverhältnisse auf der Rückseite eines Modulfeldes sind jedoch so komplex, dass die Leistung einer solchen PV-Anlage mit rein physikalischen Modellen nicht mit vertretbarem Aufwand und der erforderlichen Genauigkeit aus den aktuellen Betriebsbedingungen abgeschätzt oder vorhergesagt werden kann Im Projekt werden daher datengetriebene Modelle mit Methoden der künstlichen Intelligenz (KI-Modelle) für Monitoring und Einspeisevorhersage von bifazialen PV-Systemen entwickelt und in einem großen, kommerziellen PV-Park zur Anwendung gebracht. Diese generischen Modelle sollen zum einen durch Mehrfachadaption die Extrapolation von einer begrenzten, detailliert vermessenen Referenzeinheit (PV-Modulstrang oder PV-Teilfeld) auf den gesamten PV-Park erlauben und zum anderen auf andere PV-Anlagen übertragbar sein. Dies beinhaltet auch Verfahren zur kontinuierlichen Adaptierung der KI-Modelle mittels Life-long Learning, um eine nahezu unmittelbare Nutzung nach dem Betriebsstart einer PV-Anlage mit einer limitierten Datenbasis sowie eine fortschreitend verbesserte Anpassung der KI-Modelle an das reale Betriebsverhalten zu ermöglichen. Die KI-Modelle werden zur Ermittlung der erwarteten aktuellen Leistungswerte für einen PV-Park, für die Anlagenüberwachung zur Fehlererkennung auf der Ebene der Teileinheiten und für die vorausschauende Wartungsplanung (predictive maintenance) eingesetzt. Des Weiteren wird mit dem Modell ein Leistungsvorhersagesystem (z.B. 24h-Forecast) unter Verwendung von Wetterprognosen für eine optimierte Betriebsführung des PV-Parks erstellt und im Betriebsleitsystem implementiert und erprobt.
Ziel des Projektes ist die aktuelle Bestandserfassung dieser geheimnisvollen, nachtaktiven, hochgradig gefährdeten Vogelart, die nur noch in ausgewählten Landschaftsbereichen Sachsen-Anhalts nennenswerte Brutbestände aufweist. Für viele Menschen ist der nur wenig mehr als drosselgroße, braun gefärbte Wachtelkönig nur ein 'Phantom, da er sich nur äußerst selten außerhalb der dichten Wiesenvegetation aufhält. Dabei kannte man die aufgrund ihrer Lautäußerungen volkstümlich als 'Wiesenknarrer bezeichnete Rallenart früher als häufigen Vogel der Wiesen in Flussauen. Der Wachtelkönig (sein lateinischer Name 'Crex crex ist dem lauten Ruf des Männchens nachempfunden) verdient heute unsere volle Aufmerksamkeit. Er leidet, wie kaum ein anderer, unter intensiver Landwirtschaft, Grünlandumbruch und Grundwasserabsenkung sowie der Zersiedelung und Eindeichung einst großflächiger Überschwemmungsgebiete und zählt mittlerweile zu den global gefährdeten Vogelarten. Die Mahd oder Beweidung in den Brutgebieten der Art, die aufgrund des Klimawandels und dem zeitigen Absinken der Wasserstände zunehmend schon im Mai und Juni stattfinden, bedeuten vielfach den Verlust des Nestes oder den Tod der Jung- und Altvögel, welche Weidetieren oder Mähgeräten nicht rechtzeitig ausweichen können. Der Bestand der Art umfasst in Sachsen-Anhalt nach aktuellen Hochrechnungen vermutlich nicht mehr als 100 bis 150 rufende Männchen, deren Stimme zwischen Mitte Mai und Ende Juni nachts aus Flussauen der Saale, Elster, Elbe und Havel erschallt. Die Vögel versuchen mit ihrer minutenlang vorgetragenen Rufreihe überfliegende Weibchen anzulocken. Deshalb sind die Rufe sehr laut und können auch vom Menschen unter guten Bedingungen bis in einbem Kilometer Entfernung noch gehört werden. Einige Vögel nutzen neben Feuchtgrünländern aber auch Brachen, ungenutzte Gewerbegebiete, Äcker und Röhrichte zur Brut, weshalb in Sachsen-Anhalt - mit Ausnahme des Hochharzes, der Wälder und Trockengebiete sowie Ortschaften - nahezu flächendeckend nach der Art gesucht werden soll. Besonders in den Europäischen Vogelschutzgebieten, von denen im Land mehr als ein Dutzend von der Art besiedelt werden, will der NABU alles daran setzen, die Brutbedingungen für die Art entscheidend zu verbessern. Eine punktgenaue Kartierung der rufenden Männchen ist nötig, um gemeinsam mit den zuständigen Naturschutzbehörden und dem jeweiligen Landwirt Nestschutzzonen festzulegen, in denen die Weibchen ungestört brüten und ihre bis zu zehn Jungen großziehen können. Wie Studien aus England belegen, kann damit der Bestand der seltenen und gefährdeten Art nachhaltig positiv beeinflusst werden.
Die Veränderung des globalen Wasserkreislaufs durch den Klimawandel ist eine der größten Herausforderungen für die Gesellschaft, da trockene Regionen trockener und feuchte Regionen feuchter werden. Das Problem besteht darin, dass 85 % der Verdunstung und 77 % der Niederschläge über den Ozeanen stattfinden und der globale Wasserkreislauf aufgrund der schwierigen Beobachtungsbedingungen über den Ozeanen nur unzureichend verstanden wird. Der Austausch von Süßwasser zwischen dem Ozean und der Atmosphäre findet jedoch in einer obersten dünnen Schicht der Meeresoberfläche statt, den so genannten Oberflächenfilm. Die Verdunstung von Wasserdampf aus den Oberflächenfilmen erhöht deren Salzgehalt, während der Niederschlag den Salzgehalt in den Oberflächenfilmen verringert. Das Hauptziel dieses Forschungsprojekts ist ein umfassendes Verständnis der Dynamik und der Veränderungen des Salzgehalts und der damit zusammenhängenden thermischen Felder in den ozeanischen Oberflächenfilmen und der oberflächennahen Schicht (NSL) sowie deren Zusammenhang mit den verdunstenden Süßwasserflüssen zu erzielen. Einer der Hauptpunkte dieser Arbeit ist, dass Süsswasserflüsse (Verdunstung minus Niederschlag) direkt auf die Meeresoberfläche einwirkt und daher vorwiegend den Salzgehalt der Oberflächenfilme quasi-instant beeinflusst, während die derzeitigen Methoden, die den Salzgehalt der gemischten Schicht verwenden, sich auf dekadischen Skalen beziehen. Eine umfassende Reihe von Experimenten wird in einer großmaßstäblichen Mesokosmenanlage an der Universität Oldenburg durchgeführt, in der die treibenden Kräfte für die Verdunstung kontrolliert werden können (Wassertemperatur, Windgeschwindigkeit, turbulente Vermischung, Lufttemperatur und -feuchtigkeit). Im Mittelpunkt steht eine Expedition in den Mittelatlantik mit seinem hohen Oberflächensalzgehalt, d. h. Verdunstungsraten übersteigen die Niederschlagsraten. Während der Expedition kommt ein funkgesteuertes Katamaran zum Einsatz, der in der Lage ist, Oberflächenfilme zu sammeln. Die Beobachtungen werden durch Messungen von Bojen, schiffsbasierten Messungen und Satelliten unterstützt. Die Arbeiten ergänzen die laufenden Aktivitäten zur Untersuchung des Zusammenhangs zwischen dem Salzgehalt der Oberflächenfilme und den Niederschlägen. Diese Arbeit ist ein erster Schritt, um zu verstehen, wie der Salzgehalt der Oberflächenfilme und der oberflächennahe Salzgehalt verwendet werden können, um dynamische Süsswasserflüsse zu integrieren und Parametrisierungen zur Extrapolation von Süsswasserflüssen unter Verwendung von satellitengestützten Salzgehaltsdaten zu entwickeln.
In Deutschland wird in vielen Städten und Gemeinden das Regenwasser über eine Mischwasserkanalisation zusammen mit dem Abwasser der Haushalte/Kleinindustrien dem Klärwerk zugeführt. Bei Regenereignissen fallen so enorme zusätzliche Wasservolumina im Klärwerk an und müssen - um einen optimalen Betriebszustand beibehalten zu können - im Kanalnetz oder eigens dafür gebauten Rückhaltebecken zwischengespeichert werden. Ökonomischer und - unter dem Aspekt der Grundwasserneubildung - auch ökologischer wäre daher eine direkte Regenwasserversickerung in den Boden vor Ort. Infolge des zunehmenden Straßenverkehrs und anderer Immissionsquellen ist unser Regenwasser heutzutage jedoch nicht frei von Schadstoffen. Dies kann zu einer Belastung des Bodens und des Grundwassers bei der Regenwasserversickerung führen. Deshalb untersucht werden, inwieweit Dachmaterialien als Senke bzw. Quelle für Schadstoffe fungieren können. Bei der unvollständigen Verbrennung von fossilen Brennstoffen entstehen z.B. Verbindungen aus der Klasse der Polyzyklischen Aromatischen Kohlenwasserstoffe (PAK). Einige dieser Verbindungen sind krebserregend und werden frei oder an (Staub-)Partikel adsorbiert mit dem Niederschlag aus der Atmosphäre ausgewaschen. Deshalb wird innerhalb des Projektes die Konzentration der PAK im Regenwasser und den Dachabläufen unterschiedlicher Dachmaterialien (Tonziegel, Betondachsteine, Dachpappe, Titanzink, Kupfer, usw.) als Funktion der Jahreszeit und Regenintensität bestimmt. Gleichzeitig wird auch der Eintrag von Metallen in den Regenwasserabfluss der ausgewählten Dachmaterialen als eine mögliche Schadstoffquelle untersucht. Die Ergebnisse aus den Modelldachexperimenten werden mit Befunden realer Dachflächen verglichen. Eine Hochrechnung des Eintrages größerer Einzugsgebiete erfolgt durch die Ermittlung der Dachflächen und Materialien z.B. mittels Laserscanning und Hyperspektralaufnahmen.
Die tiefe Biosphäre umfasst eine diverse aber nur wenig untersuchte Gemeinschaft aus Mikroorganismen in Sedimenten und Gesteinen. Mikrobiologische und geochemische Untersuchungen der letzten Jahrzehnte haben gezeigt, dass bakterielles und archeales Leben weit verbreitet ist in marinen Sedimenten und sich dort bis in Tiefen von mehreren Kilometern unter dem Ozeanboden erstreckt und noch in über hundert Millionen Jahre alten Ablagerungen überdauert. Bestimmungen von Zellzahlen und deren Extrapolation auf einen globalen Maßstab legen den Schluss nahe, dass die marine tiefe Biosphäre ein bedeutendes Reservoir an Kohlenstoff darstellt und durch ihren Stoffwechselreaktionen direkten Einfluss auf das Leben an der Erdoberfläche nimmt. Obwohl Mikroorganismen der tiefen Biosphäre somit vermutlich einen enormen Einfluss auf globale Stoffkreisläufe ausüben, ist vergleichsweise wenig über ihre Zusammensetzung und Aktivität mit zunehmender Sedimenttiefe und zwischen den unterschiedlichen Regionen der Weltmeere bekannt. Ein Bereich der Ozeane, für den zurzeit so gut wie keine Informationen hinsichtlich der Verbreitung und Zusammensetzung der tiefen Biosphäre vorliegt, ist der Kontinentalrand der Westantarktis. IODP Expedition 379 hat in dieser Region zwei kontinuierliche und überwiegend ungestörte Sedimentabfolgen von exzellenter Qualität erbohrt. Diese erlauben es erstmalig die tiefe Biosphäre in marinen Sedimenten der West Antarktis bis in eine Tiefe von ca. 800 m unter dem Meeresboden zu untersuchen. Änderungen im Porenwasserchemismus, wie das Aufzehren von Sulfat und das plötzliche Auftreten von Methan in einer Tiefe von ca. 670 Metern unter dem Meeresboden, liefen erste Hinweise auf die Existenz einer tiefen Biosphäre in dieser bis jetzt wenig untersuchten Region. Um die Gesellschaft an Mikroorganismen und die durch sie durchgeführten Prozesse qualitative und quantitative zu erfassen, wird in diesem Projekt ein Multiproxyansatz gewählt, der aus der Mengenbestimmung und Identifizierung von Verteilungsmustern von intakten polaren Lipiden, der Kohlenstoffisotopie leichter Kohelnwasserstoffe und direkten Zellzählungen besteht. Diese Untersuchungen werden durch komplementäre phylogenetischen Analysen und Kultivierungsexperimenten ergänzt. Ergebnisse der hier geplanten Untersuchungen werden damit neue Erkenntnisse hinsichtlich der Zusammensetzung und Verteilung der mikrobiellen Vergesellschaftung in einer Region unseres Planeten führen, welche mit Blick auf die tiefe Biosphäre komplettes Neuland darstellt.
Origin | Count |
---|---|
Bund | 626 |
Land | 47 |
Wissenschaft | 13 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Daten und Messstellen | 9 |
Ereignis | 1 |
Förderprogramm | 551 |
Taxon | 1 |
Text | 60 |
Umweltprüfung | 1 |
unbekannt | 51 |
License | Count |
---|---|
geschlossen | 69 |
offen | 595 |
unbekannt | 9 |
Language | Count |
---|---|
Deutsch | 539 |
Englisch | 217 |
Resource type | Count |
---|---|
Archiv | 9 |
Bild | 2 |
Datei | 15 |
Dokument | 32 |
Keine | 427 |
Unbekannt | 3 |
Webdienst | 12 |
Webseite | 216 |
Topic | Count |
---|---|
Boden | 459 |
Lebewesen und Lebensräume | 512 |
Luft | 414 |
Mensch und Umwelt | 673 |
Wasser | 392 |
Weitere | 653 |