Das Projekt "Entwicklung eines umweltfreundlichen und kostengünstigen in situ Aluminisierungsverfahrens zum Korrosionsschutz metallischer Bauteile in aggressiven Hochtemperaturumgebungen" wird vom Umweltbundesamt gefördert und von DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts durchgeführt. Bei vielen Anwendungen im Hochtemperaturbereich kommt es zu Korrosionserscheinungen an metallischen Konstruktionsmaterialien aufgrund der Prozessgase. Besonders aggressive Verbrennungsatmosphären treten vor allem bei der Müllverbrennung, in der Zementindustrie oder anderen Prozessen, in denen Ersatzbrennstoffe wie etwa hochkalorische Müllfraktionen (Kunststoffabfälle) eingesetzt werden, aber auch bei Prozessen der chemischen Industrie auf. Kritisch sind hierbei im Wesentlichen hohe Gehalte an Chlorverbindungen bzw. weiteren Halogenen, Alkalien, Schwefel und Schwermetallen, welche die Bildung leicht flüchtiger Verbindungen bzw. schmelzflüssiger Salze ermöglichen. Die Untersuchungen konzentrieren sich auf Anker zur Befestigung der Feuerfestmaterialauskleidung, sind aber auf andere korrosionskritische Bereiche übertragbar. Diese Anker sind starken korrosiven Angriffen ausgesetzt aufgrund der Porosität des Auskleidungsmaterials und einhergehender Diffusionspfade für die Prozessgase. Das Versagen derartiger Anker ist sehr kostspielig, da Schäden durch Abplatzen von Mauerteilen auftreten können und Stillstandzeiten zwecks Reparaturen notwendig werden können. Um eine möglichst lange Betriebsdauer sicherzustellen, werden in den hochtemperaturbeanspruchten Bereichen derzeit kostenintensive Austenite oder Nickelbasislegierungen als Ankermaterialien verwendet. Das vorliegende Projekt setzt sich zum Ziel, diese Materialien durch kostengünstige Werkstoffe, welche mit einer schützenden Aluminiumdiffusionsschicht versehen werden, zu ersetzen. Hierfür sollen Schichtsysteme entwickelt werden, welche direkt auf eingebaute Anker appliziert werden können. Der notwendige Diffusionsprozess soll mittels der prozesseigenen Energie erfolgen, ohne dass die Verwendung einer Schutzgasatmosphäre notwendig ist. Für die Beschichtung sind umweltfreundliche, wasserbasierte Schlickersysteme vorgesehen. Zum Schutz vor Oxidation des zu diffundierenden Aluminiums sind unterschiedliche Deckschichtsysteme vorgesehen, welche im Laufe des Vorhabens entwickelt und untersucht werden.
Das Projekt "Feinstpartikelabscheidung für Hochtemperaturprozesse unter Nutzung aktiver und passiver, thermisch induzierter Potenzialfelder" wird vom Umweltbundesamt gefördert und von Institut für Umwelt & Energie, Technik & Analytik e.V. durchgeführt.
Das Projekt "Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Teilprojekt: Vermeidung der Feuerraumwandkorrosion" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachgebiet Energiesysteme und Energietechnik durchgeführt. Ziel ist die Gewinnung gesicherter Erkenntnisse bzgl. des Auftretens von korrosiven Wandatmosphären, abhängig von der Anlage, deren Betriebsweise und der eingesetzten Kohle, um eine wirkungsgradsoptimierte Fahrweise unter Einhaltung eines gesicherten Anlagendauerbetriebes zu ermöglichen. Im Technikum werden Versuche in HCl,H2S-haltiger Atmosphäre durchgeführt, eine Online-Korrosionssonde entwickelt und die Verschlackungsneigung von Kohlen untersucht. In der Großanlage wird der Einfluss anlagentechnischer Parameter auf korrosive Wandatmosphären untersucht und die Sonde erprobt. Es wird ein Simulationsmodul zur Modellierung korrosionsverursachender Atmosphären entwickelt und an Messungen in der Großanlage validiert. Zudem werden Simulationen zur Vorhersage der Verschlackung in der Großanlage durchgeführt. Mit erarbeiteten Standards zur Grenze der unkritischen Wandatmosphärenzusammensetzung werden Empfehlungen für die künftig optimierte Anlagentechnik und deren Betriebsweisen geliefert. Das Simulationsmodul dient zur Vorhersage der kritischen Wandatmosphärenzusammensetzung und das Online-Monitoringsystem dient im Dauereinsatz als Kontrollinstrument der Umfassungswände.
Das Projekt "Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius" wird vom Umweltbundesamt gefördert und von Friedrich Wilhelms-Hütte Eisenguß GmbH durchgeführt. Ziel des Verbundvorhabens ist ein Entwicklungsschritt von 50-100 Grad Celsius für warmfeste Gusseisenwerkstoffe mit Kugelgraphit (Sphäroguss, GJS) zur direkten Anwendung in der SIEMENS Gasturbine mit verbesserten Werkstoffeigenschaften zur Herstellung dickwandiger Gussstücke im Anwendungstemperaturbereich bis über 500 Grad Celsius. 1) Bewertung der metallurgischen Grundlagen; 2) Erarbeitung einer Strategie zur Legierungsdefinition unter Berücksichtigung kombinatorischer Methoden und die Erstellung eines Anforderungsprofils; 3) Herstellung von Laborschmelzen und Screening-Versuche zur Einordnung der Schmelzen; 4) Herstellung von Gussproben mit bauteilähnlichen Querschnitten; 5) Entwicklung und Herstellung eines einbaufertigen Demonstrationsbauteils; Wirtschaftliche Herstellung zahlreicher großvolumiger Gussstücke - Unmittelbare Verwendung und Erprobung eines Demonstrationsbauteils in der Gasturbine - Direkte und kurzfristige Anwendung in Wärmekraftanlagen - Erkenntnistransfer für thermisch hochbelastete Bauteile der Antriebstechnik. Der im Rahmen des Projekts zu entwickelnde Verdichterleitschaufelträger soll in einer Siemens Gasturbine eingebaut werden.
Das Projekt "Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius" wird vom Umweltbundesamt gefördert und von Siemens AG durchgeführt. Ziel des Verbundvorhabens ist ein Entwicklungsschritt von 50-100 Grad Celsius für warmfeste Gusseisenwerkstoffe mit Kugelgraphit (Sphäroguss, GJS) zur direkten Anwendung in der SIEMENS Gasturbine mit verbesserten Werkstoffeigenschaften zur Herstellung dickwandiger Gussstücke im Anwendungstemperaturbereich bis über 500 Grad Celsius. 1) Bewertung der metallurgischen Grundlagen; 2) Erarbeitung einer Strategie zur Leistungsdefinition unter Berücksichtigung kombinatorischer Methoden und die Erstellung eines Anforderungsprofils; 3) Herstellung von Laborschmelzen und Screening-Versuche zur Einordnung der Schmelzen; 4) Herstellung von Gussproben mit bauteilähnlichen Querschnitten; 5) Entwicklung und Herstellung eines einbaufertigen Demonstrationsbauteils - Wirtschaftliche Herstellung zahlreicher großvolumiger Gussstücke - Unmittelbare Verwendung und Erprobung eines Demonstrationsbauteils in der Gasturbine - Direkte und kurzfristige Anwendung in Wärmekraftanlagen - Erkenntnistransfer für thermisch hoch belastete Bauteile der Antriebstechnik. Der im Rahmen des Projekts zu entwickelnde Verdichterleitschaufelträger soll in einer Siemens Gasturbine eingebaut werden.
Das Projekt "Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Staatliche Materialprüfungsanstalt Darmstadt, Zentrum für Konstruktionswerkstoffe, Fachgebiet und Institut für Werkstoffkunde durchgeführt. Ziel ist die Entwicklung eines warmfesten GJS-Gusseisenwerkstoffes mit Kugelgraphit mit verbesserten Werkstoffeigenschaften zur Herstellung dickwandiger großvolumiger Gussstücke im Anwendungstemperaturbereich bis über 500 Grad Celsius mit dem Schwerpunkt auf Anwendungen im Gas- und Dampfturbinenbau. Der Arbeitsplan sieht die Untersuchung der zeit- und temperaturabhängigen Eigenschaften und Bewertung mit Gefügestruktur, Prozess- und Wärmebehandlungsparametern vor. Die Proben für diese Untersuchungen stammen aus Modellierungen im Rahmen der Legierungsentwicklung sowie um Kandidatlegierungen im Rahmen der Legierungs- und Prozessoptimierung. Streubandanalysen sollen eine vergleichbare Bewertung der statischen und zyklischen Hochtemperatureigenschaften und damit die Auswahl einer geeigneten Legierung begleitend von Gefügeanalysen maßgeblich unterstützen. Die Ergebnisse fließen direkt in die Auslegung eines Demonstrationsbauteils ein. Somit ist diese innovative Werkstoffentwicklung ein wichtiger Schritt zur Optimierung großvolumiger, thermisch hochbelasteter Gussstücke, mit denen sich Energie- und Rohstoffbedarf reduzieren lassen.
Das Projekt "Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Mineralfreisetzung, -umwandlung und -antransport, innovative Wandstärkenmessungen mit Ultraschall (verwendbar während des Betriebes)" wird vom Umweltbundesamt gefördert und von Technische Universität Braunschweig, Institut für Wärme- und Brennstofftechnik durchgeführt. Ziel des Vorhabens ist die zuverlässige Beurteilung und Vorhersage von Korrosionen und Verschlackung in Hochleistungskraftwerken mit hohen Dampfparametern (Temperaturen über 700 Grad C und Drücken über 350 bar) u.a. durch die Simulation der Freisetzung und Umwandlung der Kohlemineralien während der Verbrennung und des Antransports an die Heizflächen. Mit Kohlen und definierten, relevanten Mineralsystemen werden Versuche im Labor und in Technikums- und Großanlagen durchgeführt. Proben von Brennstoffmineralien, Aschen und Schlacken werden analysiert und vorhandene Literatur ausgewertet und damit die entwickelten Simulationsmodelle validiert. Ein Modul entscheidet, ob eine Rechnung mit dem thermodynamischen Gleichgewicht ausreicht oder ein kinetisches Modell benutzt werden muss. Alle Programme und Datenbanken werden modular und an verschiedene CFD-Brennkammerprogramme ankoppelbar erstellt. Die zuverlässige Berechnung dieser Vorgänge ist eine wesentliche Voraussetzung für den Bau und Betrieb dieser neuen CO2-armen Kraftwerke und die Ergebnisse dieses Projektes werden daher von Kraftwerksherstellern und Betreibern verwendet werden und die Konkurrenzfähigkeit der deutschen Industrie steigern.
Das Projekt "Entwicklung einer warmfesten GJS-Gusseisenlegierung zur Herstellung dickwandiger Gussstücke für höchste Anwendungstemperaturen größer gleich 500 Grad Celsius" wird vom Umweltbundesamt gefördert und von Technische Universität Clausthal, Institut für Metallurgie, Arbeitsgruppe Gießereitechnik durchgeführt. Das Ziel des Projekts ist die Entwicklung eines Eisengusswerkstoffs EN-GJS mit hoher Warmfestigkeit bei Temperaturen größer als 500 Grad Celsius zur Herstellung dickwandiger großvolumiger Gussstücke für Anwendungen im Gas- und Dampfturbinenbau. Dazu ist vorgesehen, an der TU Clausthal Laborschmelzen zu gießen, um den Einfluss von Legierungs- und Spurenelementen sowie von Impfmittelmenge, Impfmittel und Impfprozess auf die Warmfestigkeit der Gusseisenlegierungen zu untersuchen. Zusätzlich soll in ausgewählten Fällen eine Wärmebehandlung durchgeführt werden, um die Auswirkungen verschiedener Prozessparameter auf Gefüge und Eigenschaften zu prüfen. Die Gefüge der Gusswerkstoffe werden untersucht und mit den mechanischen Eigenschaften korreliert. Um den Probenaufwand gering zu halten, wird die statistische Versuchsplanung eingesetzt. Weiterhin werden die Gefüge der industriell hergestellten Schmelzen für Probekörper und Bauteil mit denen der im Laborbetrieb erzeugten verglichen. Die Ergebnisse dienen der Auslegung von warmfesten GJS-Bauteilen. Durch diese Entwicklung sollen thermisch hochbelastete Gussstücke im Großgussbereich unter verringertem Energie- und Rohstoffaufwand hergestellt werden können.
Das Projekt "Teilprojekt: Entwicklung Substrat/Trägerung und Katalysator, Koordination" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für keramische Technologien und Sinterwerkstoffe durchgeführt. Im Gesamtprojekt MethaKat soll eine robuste und preiswerte Technologie zur Entsorgung von Deponie- und Grubenschwachgasen entwickelt werden, die gegenwärtig einen großen Teil des klimarelevanten Methanausstoßes darstellen. Das Ziel des IKTS-Teilprojektes ist die Entwicklung einer stabilen und hochpermeablen Keramikträgerung für Hochtemperaturkatalysatoren, speziell: - Entwicklung der Kat-Beschichtung, - Ableitung optimierter Trägergeometrien, - Vorentwicklung einer Fertigungstechnik, - Bereitstellung von Proben/Katalysatoreinsätzen für die Projektpartner. Außerdem wird das IKTS das interdisziplinär angelegte Gesamtprojekt leiten, in dem 3 FuE-Einrichtungen, 5 Industrieunternehmen und eine Behörde zusammenarbeiten. Über die unmittelbare Projektanwendung hinaus ist ein hohes Potential für Anwendungen in der chemischen und thermischen Reaktionstechnik abzusehen, wo die Ergebnisse zu einer besseren Energieausnutzung, geringeren Produktverunreinigungen bzw. Schadstoffemissionen, d.h. übergreifend zu den allgemeinen Umwelt- und Klimaschutzzielen, beitragen können.
Das Projekt "Weiterentwicklung und Betriebseinführung von Verfahren zur Umweltentlastung am Beispiel Schmiedeöfen durch Einsatz neuartiger Beheizungs- und Prozesstechnologien bei Hochtemperatur" wird vom Umweltbundesamt gefördert und von Kind & Co., Edelstahlwerk Kommanditgesellschaft durchgeführt. Zielsetzung und Anlass des Vorhabens: Innovative Verfahren zur Umweltentlastung an industriellen Hochtemperatur-Prozessanlagen werden weiterentwickelt und betrieblich erprobt. Die FuE-Arbeiten werden beispielhaft durchgeführt an Schmiedeöfen, die repräsentativ sind für zahlreiche Öfen im industriellen Einsatz. Ergebnisse und Wirkung dieser Verfahren sind Steigerung der Energieeffizienz, Senkung der Schadstofffreisetzung, Minimierung der Rohstoffeinsatzes sowie die Erprobung neuartiger, gering gesundheitsgefährdender keramischer Faser-dämmstoffe. Dieses soll erreicht werden durch: -Senkung der Abgaswärmeverluste mittels neuartiger regenerativer Wärmetauscher -Verbesserung und Vergleichsmäßigung der Ofenatmosphäre durch schnelle Gas/Luft-Regelung -Optimierung der Beheizungstechnik -Senkung der Aufheiz- und Liegezeiten -Verbesserung der Arbeitsplatzqualität Fazit: Die angestrebten Ziele des Forschungsvorhabens wurden erreicht. Die Arbeiten wurden mit guten Ergebnissen durchgeführt und abgeschlossen. Durch die Weiterentwicklung und die Betriebseinführung von innovativen Verfahren zur Beheizung und Prozessführung von Schmiedeöfen wurde eine deutliche Umweltentlastung erreicht. Einsparpotentiale von bis zu 30% bei Brennstoffbedarf, CO2-Freisetzung und Rohmaterialeinsatz wurden identifiziert, Verfahren zur Nutzung entwickelt, erprobt und sodann diese Einsparungen im Betrieb realisiert. Die Übertragung dieser Technologien auf Industrieöfen auch in anderen Bereichen wurde aufgezeigt.
Origin | Count |
---|---|
Bund | 11 |
Type | Count |
---|---|
Förderprogramm | 11 |
License | Count |
---|---|
offen | 11 |
Language | Count |
---|---|
Deutsch | 11 |
Resource type | Count |
---|---|
Keine | 4 |
Webseite | 7 |
Topic | Count |
---|---|
Boden | 9 |
Lebewesen & Lebensräume | 6 |
Luft | 7 |
Mensch & Umwelt | 11 |
Wasser | 5 |
Weitere | 11 |