Die Umweltverträglichkeit von Bauprodukten, die in Kontakt mit Regen- oder Sickerwasser kommen, wurde durch Kombination normierter Elutions- (DSLT, Perkolationstest) und Ökotoxizitätstests (Algen, Daphnien, Fischeier, Leuchtbakterien) sowie Gentoxizitätstests (Ames, umu) untersucht. Ziel des Projektes war es einerseits, einen Beitrag zur Harmonisierung der Prüfmethoden unter CEN/TC 351 zu leisten und andererseits potentielle Produktgruppen, die sich für die Umweltzeichenvergabe des Blauen Engels eignen würden, zu erkennen. Durch umfangreiche qualitative und quantitative chemische Analysen (u. a. GC-MS- sowie LC-MS-Screening) wurden einige der freigesetzten Stoffe identifiziert und anhand von Literaturdaten ökotoxikologisch charakterisiert. Insgesamt wurden 34 Bauprodukte (Dachbahnen, Lacke, Wood-Plastic-Composites, Pflasterfugenmörtel, Korkgranulate, Schaumglasschotter, Wegedecken, Dichtmassen) untersucht. Hierbei wurden insbesondere bei den Fugenmörteln und Korkgranulaten sehr hohe Ökotoxizitäten (bis LID = 16384 bei den Fugenmörteln und LID = 24578 bei den Korkgranulaten) beobachtet. Algen- und Leuchtbakterientests waren in der Regel deutlich empfindlicher als der Daphnien- und Fischeitest. Die untersuchten Dachbahnen, Lacke, Wood-Plastic-Composites und Schaumglasschotter zeigten hingegen keine oder nur sehr geringe Ökotoxizitäten. Zur Qualitätssicherung und Validierung wurde ein Europäischer Ringversuch gemäß den Vorgaben der DIN ISO 5725 organisiert, durchgeführt und ausgewertet. Hierzu wurde ein Fugenmörtel als flächiges Produkt im DSLT und als gebrochenes körniges Produkt im Perkolationstests eluiert und die Eluate nachfolgend in den 29 teilnehmenden Laboren hinsichtlich ihrer Ökotoxizität untersucht. Hierbei wurden insgesamt plausible Ergebnisse und gute (<50 %) bis sehr gute (<20 %) Reproduzierbarkeiten erzielt. Es wird empfohlen, für die Produktgruppen Dachbahnen, Kunstrasen und Sportböden sowie Fugenmörtel Vergabekriterien für den Blauen Engel zu entwickeln. Quelle: Forschungsbericht
Das Projekt "VP-3.2./BioWPC" wird vom Umweltbundesamt gefördert und von Erfurt.Sasse Industry Holding GmbH & Co. KG durchgeführt. Das Vorhaben zielt auf eine weitere Steigerung des Einsatzes nachwachsender Rohstoffe und eine langfristige sowie weitgehende Umstellung chemischer Produktionsprozesse auf nachwachsende Rohstoffe. Dafür sind neue inter- und transdisziplinäre Ansätze in Forschung, Entwicklung und Produktion erforderlich. Die Umsetzung dieser anspruchsvollen Zielstellungen erfordert einen nicht unerheblichen technischen und finanziellen Aufwand. Sie ist nur durch eine integrale Betrachtung von Prozessen vom Labor- bis zum Produktionsmaßstab möglich. Daher sind im Projekt Partner entlang der gesamten Wertschöpfungskette beteiligt. Auf Grund der Dimension und der Ziele des Vorhabens kommt der Einbindung eines integrierten Chemieverbund-Standortes wesentliche Bedeutung zu, insbesondere um den Ansatz der Bio-Raffinerie zu realisieren. Die Zuwendung würde dazu beitragen, dass die industriellen Partner (KMU und Großunternehmen) ihre F&E Tätigkeit im Bereich nachwachsender Rohstoffe intensivieren würden und Tätigkeiten aufnehmen würden, die sie sonst nur in sehr beschränktem Umfang durchführen könnten. Bei der Umsetzung des Projektes sind umfangreiche wissenschaftlich-technische Fragen zu klären, die die industriellen und wissenschaftlichen Partner nicht mit eigenen Mitteln lösen können. Versuche zur Dosierung von Partikeln verschiedener Größen und Schlankheitsgrade (Späne, Fasern) und Holzarten.
Das Projekt "VP-3.2./BioWPC" wird vom Umweltbundesamt gefördert und von Herotron E-Beam Service GmbH durchgeführt. Im Teilvorhaben 4 (Herotron) wird die Behandlung mit Elektronenstrahlung zur Modifizierung der Ausgangsstoffe, Komposite und Bauteile untersucht. Das Ziel ist es die Parameter der Anlage für die verschiedenen Materialien zu validieren und eine Anlage für eine kontinuierliche Verfahrensweise zu konzipieren. Dieses Teilvorhaben dient zur Modifizierung der Buchenholzfasern, der Holz-Polymer-Werkstoffe und der Bauteile mit Hilfe der Behandlung mit Elektronenstrahlung. Je nach Material muss die Strahlenintensität und die Verweilzeit angepasst werden. Als Ausgangsstoff werden die Hackschnitzel mit Hilfe der Elektronenstrahlung modifiziert. Die bestrahlten Hackschnitzel werden anschließend im TV1 zu Refinerfasern verarbeitet. Ziel ist es wie im TV2 eine Verbesserung des mechanischen Aufschlusses der Fasern zu erreichen und die Geruchsemissionen zu mindern. Die für die Komposite in TV3 entwickelten reinen Polyamidblends und -copolymere und die mit den Additiven für die Strahlenvernetzung werden zum Vergleich ebenfalls einer Strahlenbehandlung unterzogen. Die Entwicklung von PA-Blends, -copolymeren und Additivierung wird iterativ optimiert. Anschließend werden die aus den Kompositen in TV8 hergestellten Prüfkörper und Bauteile durch die Strahlenbehandlung modifiziert und im TV9 charakterisiert und bewertet. Zum Vergleich werden auch die in TV5 und TV7 hergestellten Bauteile bestrahlt und im Rahmen von TV5 und TV7 geprüft.
Das Projekt "VP-3.2./BioWPC" wird vom Umweltbundesamt gefördert und von Faurecia Innenraum Systeme GmbH durchgeführt. In diesem Teilvorhaben erfolgt die Qualifizierung von BioPA für die Spritzgießverarbeitung von Holzfaser-Polymer-Werkstoffen für Anwendungen im Fahrzeuginnenraum. Ausgehend vom derzeitigen Stand der Technik wird eine Bewertung sowohl des Spritzgießverhaltens der entwickelten WPC als auch der Brauchbarkeit hinsichtlich zu erfüllender Material- und Bauteilanforderungen vorgenommen. Für in diesem ersten Schritt positiv evaluierte WPC-Muster erfolgt die Verarbeitung mit seriennahen Werkzeugen für Türträger, so dass am Ende des Projektes belastbare Aussagen sowohl zur prinzipiellen Einsatzfähigkeit der WPC in einer konkreten Anwendung als auch zu Eigenschaften und Kosten im Vergleich mit best practice Materialkonzepten vorliegen werden. Auf der Basis eines zu erstellenden Lastenheftes für Anwendungen im Fahrzeuginnenraum und von bestehenden Konzepten hinsichtlich Materialien und Verarbeitungstechnologien mit Blick auf Leichtbau und Nachhaltigkeit wird zunächst das grundlegende Potential der neuen WPC für die Spritzgussverarbeitung zu relevanten Bauteilen untersucht. Dies erfolgt auf der Grundlage von Musterplatten, wobei sowohl das Spritzgießverhalten der Materialien als auch deren Performance bewertet werden. Für positiv evaluierte Materialien erfolgt in einer zweiten Stufe der Übergang zu realen Werkzeugen und der Bewertung entsprechender Bauteile.
Das Projekt "VP-3.2./BioWPC" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Werkstoffmechanik, Außenstelle Halle durchgeführt. Das Teilvorhaben 'Charakterisierung und Bewertung' hat die Zielstellung eine umfassende werkstoffmechanische Charakterisierung der im Verbund generierten Werkstoffe, Halbzeuge und Bauteile zu gewährleisten. Mit den ermittelten Kenndaten werden auf der einen Seite die variierenden Herstellungsmethoden bewertet. In iterativen Schritten, in enger Kooperation mit den anderen involvierten Teilvorhaben werden die optimalen Prozessfenster gefunden. Auf der anderen Seite liefert das Teilvorhaben die Parameter für den Aufbau einer Datenbasis für den Einsatz der innovativen BioWPC-Systeme. Des Weiteren wird durch die Bestimmung der Materialkennwerte die Ausgangsbasis für die Simulation des Werkstoff- und Bauteilverhaltens unter komplexen Belastungen gelegt. Nur eine statistisch abgesicherte Datenbasis erlaubt, mit den für die Materialklassen charakteristischen Streuungen, Sensitivitätsanalysen durchzuführen. Dies wird benötigt um eine gleichbleibende Qualität der Bauteile und Halbzeuge auch bei prinzipbedingten Streuungen in den Verfahrensabläufen und Schwankungen der Eigenschaften der aus nachwachsenden Rohstoffen (Problem der Jahrgänge) generierten Werkstoffe zu garantieren. Die Innovation besteht darin, Verbundwerkstoffe aus 100Prozent nachwachsenden Rohstoffen mit deutlich verbesserten Eigenschaften gegenüber herkömmliche Holz-Polymer-Werkstoffe (WPC) für konstruktive Anwendungen zu generieren. Bei den herkömmlichen Holz-Polymer-Werkstoffen handelt es sich um Verbundwerkstoffe, typischerweise aus Holzmehl von Nadelhölzern und Kunststoffen wie z.B. Polypropylen und Polyethylen. Diese Werkstoffe werden hauptsächlich als Deckings eingesetzt. Problem ist zum einen, dass diese herkömmlichen Holz-Polymer-Werkstoffe nicht in konstruktiven Anwendungen eingesetzt werden können. Zum anderen kommt es in den nächsten Jahren durch den von der Bundesregierung angestrebten Waldumbau von Nadelholzwäldern hin zu Misch- und Laubwäldern zu einer Verknappung des Rohstoffes Nadelholz, das bisher für die Holz-Polymer-Werkstoffe verwendet wird. Durch den Waldumbau wird Buchenholz in großen Mengen zur Verfügung stehen. Um verbesserte Eigenschaften zu erreichen, werden als Verstärkungsfasern thermomechanisch und chemisch aufgeschlossene Buchenholzfasern verwendet, die in niedrigschmelzende Polyamide auf Basis nachwachsender Rohstoffe (Biocaprolactam, Aminoundecansäure bzw. C10/C12-Dsiäuren / Diamine aus Rizinusöl) eingebunden werden. Das Teilvorhaben begleitet und ermöglicht die Wertschöpfung im Verbund vom Rohstoff Buchenholz bis zum komplexen Bauteil für die Endanwendung und liefert somit einen essentiellen Beitrag zum Verbundvorhaben als auch zum Bioökonomie - Cluster. Die im Rahmen des Forschungsvorhabens erzielten Ergebnisse und produzierten Werkstoffe erfüllen den Wunsch der Industrie und der Kunden nach ökologisch nachhaltigen Produkten.
Das Projekt "VP-3.2./BioWPC" wird vom Umweltbundesamt gefördert und von 3-P Präzisions-Plastic-Produkte GmbH durchgeführt. Die Weiterverarbeitung der innovativen Holz-Polymer-Werkstoffe zu Bauteilen im Spritzgießverfahren ist das Ziel in diesem Teilvorhaben. Im Mittelpunkt stehen die Ermittlung und die Verarbeitbarkeit der neuen Materialien und die Optimierung des Spritzgießverfahrens. So sind der Einzug und die Schneckengeometrie der Spritzgießautomaten an die Materialien anzupassen. Die Anspritzsysteme müssen für den Erhalt der Naturfasergeometrien hinsichtlich des Querschnitts scheroptimiert werden. Um die Scherbelastung so gering wie möglich zu halten, müssen die Werkzeuge auf die neuen Materialien ausgelegt sein. Die Parameter sollen an entsprechenden Prüfwerkzeugen ermittelt werden. Um den komplexen Bauteilen einen ästhetischen Mehrwert zu geben, soll die farbliche Direktgestaltung und die Oberflächenstrukturierung im Spritzgießprozess untersucht werden. Die Bauteile sollen als Demonstrationsobjekte für die Leistungsfähigkeit des neuen Werkstoffes dienen. AP1 Evaluierung der Verarbeitungsmöglichkeiten mittels Spritzgießtechnik an ReferenzsystemenAP2 Bauteilauslegung und Entwurf von Spritzgießkavität sowie deren FertigungAP3 Erforschen des Verarbeitungsverhaltens in Abhängigkeit der Rezeptur der KompositeAP4 Anpassen und Optimieren der Spritzgießtechnik für die Verarbeitung der BioWPCAP5 Untersuchung der optischen Direktgestaltung im SpritzgießprozessAP6 Bewerten & Erproben der Verfahrensabläufe und der Prozessstabilität im Demonstrationsmaßstab über die Herstellung von Demonstratorbauteilen.
Das Projekt "VP-3.2./BioWPC" wird vom Umweltbundesamt gefördert und von Institut für Holztechnologie Dresden gemeinnützige GmbH durchgeführt. Holz-Polymer-Werkstoffe werden gegenwärtig mit Nadelholz-Holzmehl und Polyolefinen (vorwiegend PE; PP) produziert. Durch den seit vielen Jahren laufenden Waldumbau wird das Nadelholz zukünftig nicht mehr ausreichend zur Verfügung stehen, dafür erhöht sich das Laubholzaufkommen. Buchenholzfasern werden für Holz-Polymer-Werkstoffe bisher nicht eingesetzt, daher ist die technologische Realisierbarkeit eines solchen Prozesses in enger Zusammenarbeit mit den Verbundpartnern nachzuweisen. Die Innovation des Verbundprojektes besteht darin, Verbundwerkstoffe aus 100Prozent nachwachsenden Rohstoffen mit deutlich verbesserten Eigenschaften gegenüber herkömmlichen Holz-Polymer-Werkstoffen (WPC) für konstruktive Anwendungen zu generieren. Der Hauptschwerpunkt im IHD gemeinnützige GmbH besteht in der Herstellung von Faserstoffen und - Spänen, vorrangig aus Buchenholz, unter Anwendung verschiedener Aufschlussbedingungen, Untersuchungen zur Zugabe von Additiven beim Zerfaserungsprozess sowie Prüfungen an produzierten Elementen. Nach der Optimierung von Vorzugsvarianten in Anlagenversuchen bei dem beteiligten Projektpartner sind die Ergebnisse direkt für die Industrie nutzbar. Das Teilvorhaben bildet eine Basis für die weiteren Schritte im Verbundvorhaben. Nur durch die maßgeschneiderte Bereitstellung entsprechender Partikel (Späne, Holzmehl, Fasern) und die Messung der geeigneten Parameter und den Bezug dieser zu den technologischen Kenngrößen ist eine optimale Einstellung der Prozesse möglich.
Das Projekt "VP-3.2./BioWPC" wird vom Umweltbundesamt gefördert und von Global Solutions GmbH durchgeführt. Das Ziel dieses Teilvorhaben ist es innovative Holz-Polymer-Werkstoffe in Granulatform für die Weiterverarbeitung im Spritzgießprozess zu entwickeln. Die Innovation besteht darin, Verbundwerkstoffe aus 100Prozent nachwachsenden Rohstoffen mit deutlich verbesserten Eigenschaften gegenüber herkömmliche Holz-Polymer-Werkstoffe (WPC) für konstruktive Anwendungen zu generieren. - vgl. ausführlich die Teilvorhabensbeschreibung - Im Teilvorhaben werden folgende wissenschaftliche/technische Erkenntnisse angestrebt (vgl. ausführlich die Teilvorhabensbeschreibung): Evaluierung der Verfahrensmöglichkeiten für die Compoundierung der innovativen Holz-Polymer-Werkstoffe mit Hilfe von Referenzsystemen / Konzipieren von Verfahrensabläufen für die Faserdosierung / Anpassung des Verfahrens an die innovativen Holz-Polymer-Werkstoffe / Anpassung der Rezeptur entsprechend des Anforderungsprofils der Werkstoffe (hinsichtlich Verarbeitungsverhalten und Bauteileigenschaften) / Optimierung des Compoundierprozesses / Untersuchung der Möglichkeiten der Additivierung / Evaluierung der Compoundierung im Technikumsmaßstab.
Das Projekt "WPC-Spritzguss" wird vom Umweltbundesamt gefördert und von Hochschule Magdeburg-Stendal (FH), Fachbereich Ingenieurwissenschaften und Industriedesign, Kompetenzzentrum Ingenieurwissenschaften,Nachwachsende Rohstoffe durchgeführt. Wood-Plastic-Composites (WPC),auch als Holzpolymerwerkstoffe bezeichnet, sind Verbundwerkstoffe, die durch die thermoplastische Verarbeitung von Holzfasern oder Holzmehl mit einem Kunststoff und Additiven entstehen. Als Formgebungsverfahren kommen Extrusion, Spritzgießen, Thermoformen und Rotationsgussverfahren zur Anwendung. Der WPC-Spritzguss stellt besondere Anforderungen an die Verarbeitungstechnologie. Der hohe Füllgrad hat generell eine hohe Schmelzviskosität zur Folge, die ihrerseits das Entweichen von eingeschlossener Luft bzw. Wasserdampf extrem erschwert. Hohe Zuhaltekräfte (bedingt durch die hohen erforderlichen Einspritzdrücke) begünstigen das Entstehen von Lufteinschlüssen.
Das Projekt "Vergleich unterschiedlicher Verfahren zur Herstellung von WPC - VuV-WPC" wird vom Umweltbundesamt gefördert und von Institut für Polymertechnologien e.V. durchgeführt. Holz-Kunststoff-Verbundwerkstoffe (engl. WPC) zeigen in Deutschland und Europa ein jährlich zweistelliges Wachstum und sind damit eine der erfolgreichsten Materialgruppen im Bereich der nachwachsenden Rohstoffe. Sie werden jedoch mit sehr unterschiedlichen Anlagenkonfigurationen hergestellt, die es weder dem Fachmann, insbesondere aber dem Einsteiger nicht erlauben, zu entscheiden, welche Anlagenkonzeption für welche Aufgabe die sinnvollste (in Abwägung von Preis, Leistung, Variabilität etc.) ist. Das Projekt soll in enger Kooperation mit Anlagenherstellern die wesentlichen im Markt verfügbaren Anlagenkonzeptionen (Pelletpresse, Palltrusion, Heiz-Kühl-Mischer, gleichlaufender oder gegenläufiger paralleler oder konischer Doppelschneckenextruder, Scherwalzen-, Planetwalzen- und Multirotationsextruder, Innenkneter) auf vergleichender Basis untersuchen. Dazu sollen im Vorfeld mit den Industriepartnern die möglichen Randbedingungen bzgl. Verarbeitbarkeit (Füllstoff- und Polymergehalte und -typen, Feuchtigkeit, Durchsatz etc.) abgeklärt werden und daraus zwei Rezepturen (eine für Extrusion, eine für Spritzguss) entwickelt werden, die auf allen Anlagen verarbeitet werden können. Zwei zusätzliche Rezepturen sollen mehr die Randbereiche, wie z.B. sehr niedriger MFR des Polymers (kleiner als 1) abdecken. Die aus identischen Rezepturen hergestellten Compounds werden unter einheitlichen Bedingungen am IPT in Spritzguss und Extrusion verarbeitet und auf mechanische Festigkeiten, Quellverhalten sowie rheologisch charakterisiert. Am Johann Heinrich von Thünen Institut (vTI), Hamburg, werden die Compounds mikroskopisch, ultramikroskopisch und spektroskopisch untersucht, da davon ausgegangen wird, dass sich die eingebrachte Energie ('Knetleistung') in der morphologischen Struktur des compoundierten Füllstoffs wiederfindet. Die feinstrukturellen Analysen liefern einen wichtigen Beitrag zur Charakterisierung der Materialeigenschaften unterschiedlich hergestellter WPC.
Origin | Count |
---|---|
Bund | 56 |
Type | Count |
---|---|
Förderprogramm | 55 |
unbekannt | 1 |
License | Count |
---|---|
open | 55 |
unknown | 1 |
Language | Count |
---|---|
Deutsch | 56 |
Englisch | 3 |
Resource type | Count |
---|---|
Keine | 23 |
Webseite | 33 |
Topic | Count |
---|---|
Boden | 49 |
Lebewesen & Lebensräume | 46 |
Luft | 29 |
Mensch & Umwelt | 56 |
Wasser | 15 |
Weitere | 54 |