API src

Found 116 results.

Related terms

Chancen und Risiken des Einsatzes von Biokohle und anderer „veränderter“ Biomasse als Bodenhilfsstoffe oder für die C-Sequestrierung in Böden

Wissenschaftliche Untersuchungen zur Genese fruchtbarer, Schwarzerde-artiger Böden im Amazonasgebiet (Terra Preta) lassen auf eine anthropogene Entstehung schließen. Die stoffliche Zusammensetzung der Terra Preta wird auf die aerobe und anaerobe biochemische Umsetzung organischer Siedlungsabfälle zurückgeführt. Der hohe Anteil stabiler Kohlenstoffverbindungen kann der Zugabe von Holzkohlen zugeschrieben werden. Sie werden als wesentliche Ursache für den günstigen Humus-, Nährstoff- und Wasserhaushalt dieser Böden angeführt. Hieraus resultieren Bestrebungen in Deutschland und vielen anderen Ländern, Technologien zur Herstellung und Anwendung organischer Bodenhilfsstoffe (bzw. Bodenverbesserungsmittel) zu entwickeln und in die Praxis einzuführen. So sollen in ähnlicher Weise Böden mit stabilen organischen Verbindungen angereichert und in ihren Bodenfunktionen, insbesondere ihrer Fruchtbarkeit verbessert werden. Anhand zahlreicher Veröffentlichung sollten die Chancen (Stand der technischen Herstellung, Verwendungswege, Wirkung auf Boden und Pflanzen) und Risiken (Gehalte von Schadstoffen, negative Effekte auf Boden und Pflanze, ökonomische Risiken, Gesamtökobilanz) und die rechtlichen Regelungen dargelegt werden. Veröffentlicht in Texte | 04/2016.

WWF Deutschland stellt Holzkohle Marktanalyse vor

Am 22. August 2017 stellte der WWF Deutschland eine Marktanalyse handelsüblicher Grillkohlen in Berlin vor. Insgesamt wiesen laut WWF-Analyse 80 Prozent der getesteten Produkte Auffälligkeiten wie falsch deklarierte Holzarten auf. In 40 Prozent der Grillkohlen fanden die Umweltschützer sogar tropische Hölzer. Eine Grillkohle, die mit dem Aufdruck „kein Tropenholz“ warb, bestand laut Laboranalyse ausschließlich aus solchem. In mehreren Kohlesäcken wurden auch Ulme, Padouk und Bongossi gefunden, Holzarten, die vom Aussterben bedroht sind. Auch Grillkohlen mit Zertifizierung waren im Test auffällig, das heißt sie enthielten auch nicht oder falsch deklarierte Hölzer. Tropenholz wurde bei FSC- und PEFC-zertifizierten Produkten jedoch nicht gefunden. Für den Marktcheck hat der WWF 20 Grillkohlen mit und ohne Holz-Zertifikat aus Tankstellen, Baumärkten, Supermärkten und Discountern mit forensischen Methoden testen lassen. „Die Testergebnisse sind erschütternd. Die Holzkohlebranche scheint nach wie vor rücksichtslos alles zu verkohlen, was sie als billigen Rohstoff in die Finger bekommt. Die vielen Tropenholzfunde sind besonders schockierend. Wenn die Regenwälder beim Grillfest in Rauch aufgehen, befeuert das Artenverlust und die Klimakatastrophe. Die Branche muss schleunigst umdenken“, kritisiert Johannes Zahnen, Holzexperte des WWF Deutschland.

Markt für Mangan

technologyComment of manganese production (RER): The metal is won by electrolysis (25%) and electrothermic processes (75%). ELECTROLYSIS OF AQUEOUS MANGANESE SALTS The production of manganese metal by the electrolysis of aqueous manganese salts requires at first a milling of the manganese ore. Milling increases the active surface and ensures sufficient reactivity in both the reduction and the subsequent leaching steps. After milling the manganese ore is fed to a rotary kiln where the reduction and calcination takes place. This process is carried out at about 850 - 1000 ºC in a reducing atmosphere. As a reducing agent, several carbon sources can be used e.g. anthracite, coal, charcoal and hydrocarbon oil or natural gas. The cal-cined ore needs to be cooled below 100 ºC to avoid a further re-oxidation. The subsequent leaching process is carried out with recycled electrolyte, mainly sulphuric acid. After leaching and filtration the iron content is removed from the solution by oxidative precipitation and the nickel and cobalt are removed by sulphide precipitation. The purified electrolyte is then treated with SO2 in order to ensure plating of γ-Mn during electrolysis. Electrolysis is carried out in diaphragm cells. The cathode is normally made of stainless steel or titanium. For the anode lead-calcium or lead-silver alloy can be used. After an appropriate reaction time the cathodes are removed from the electrolysis bath. The manganese that is deposited on the cathode starter-sheet is stripped off mechanically and then washed and dried. The metal is crushed to produce metal flakes or powder or granulated, depending on the end use. ELECTROTHERMAL DECOMPOSITION OF MANGANESE ORES The electrothermal process is the second important process to produce manganese metal in an industrial scale. The electrothermal process takes place as a multistage process. In the first stage manganese ore is smelted with only a small amount of reductant in order to reduce mostly the iron oxide. This produces a low-grade ferro-manganese and a slag that is rich in Mn-oxide. The slag is then smelted in the second stage with silicon to produce silicomanganese. The molten silicomanganese can be treated with liquid slag from the fist stage to obtain relatively pure manganese metal. For the last step a ladle or shaking ladle can be used. The manganese metal produced by the electrothermal process contains up to 98% of Mn. Overall emissions and waste: Emissions to air consist of dust and fume emissions from smelting, hard metal and carbide production; Other emissions to air are ammonia (NH3), acid fume (HCl), hydrogen fluoride (HF), VOC and heavy metals. Effluents are composed of overflow water from wet scrubbing systems, wastewater from slag and metal granulation, and blow down from cooling water cycles. Waste includes dust, fume, sludge and slag. References: Wellbeloved D. B., Craven P. M. and Waudby J. W. (1997) Manganese and Manganese Alloys. In: Ullmann's encyclopedia of industrial chemistry (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169 technologyComment of manganese production (RoW): The metal is won by electrolysis (assumption: 25%) and electrothermic processes (assumption: 75%). No detailed information available, mainly based on rough estimates. technologyComment of treatment of non-Fe-Co-metals, from used Li-ion battery, hydrometallurgical processing (GLO): The technique SX-EW is used mainly for oxide ores and supergene sulphide ores (i.e. ores not containing iron). It is assumed to be used for the treatment of the non-Fe-Co-metals fraction. The process includes a leaching stage followed by cementation or electro-winning. A general description of the process steps is given below. In the dump leaching step, copper is recovered from large quantities (millions of tonnes) of strip oxide ores with a very low grade. Dilute sulphuric acid is trickled through the material. Once the process starts it continues naturally if water and air are circulated through the heap. The time required is typically measured in years. Sulphur dioxide is emitted during such operations. Soluble copper is then recovered from drainage tunnels and ponds. Copper recovery rates vary from 30% to 70%. Cconsiderable amounts of sulphuric acid and leaching agents emit into water and air. No figures are currently available on the dimension of such emissions. After the solvent-solvent extraction, considerable amounts of leaching residues remain, which consist of undissolved minerals and the remainders of leaching chemicals. In the solution cleaning step occur precipitation of impurities and filtration or selective enrichment of copper by solvent extraction or ion exchange. The solvent extraction process comprises two steps: selective extraction of copper from an aqueous leach solution into an organic phase (extraction circuit) and the re-extraction or stripping of the copper into dilute sulphuric acid to give a solution suitable for electro winning (stripping circuit). In the separation step occurs precipitation of copper metal or copper compounds such as Cu2O, CuS, CuCl, CuI, CuCN, or CuSO4 • 5 H2O (crystallisation) Waste: Like in the pyrometallurgical step, considerable quantities of solid residuals are generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (iron hydroxide, 60% water, cat I industrial waste).

Markt für Baryt

technologyComment of barite production (CA-QC, RER, RoW): Barite is mined both in open pit and underground mines. About 60 to 120 kg of Barite can be yielded from one cubic meter of ore. The ore is transported via lorry (usually less than 5km) to a washing installation. Subsequently, it is separated from the water and grinded wet or dry. Between 65% and 85% of barite contained in the ore can be extracted. This dataset includes resource extraction and processing of the material. technologyComment of niobium mine operation and beneficiation, from pyrochlore ore (BR, RoW): Open-pit mining is applied and hydraulic excavators are used to extract the ore with different grades, which is transported to stockpiles awaiting homogenization through earth-moving equipment in order to attain the same concentration. Conveyor belts (3.5 km) are utilized to transport the homogenized ore to the concentration unit. Initially, the ore passes through a jaw crusher and moves to the ball mills, where the pyrochlore grains (1 mm average diameter) are reduced to diameters less than 0.104 mm. In the ball mills, recycled water is added in order to i) granulate the concentrate and ii) remove the gas from the sintering unit. The granulated ore undergoes i) magnetic separation, where magnetite is removed and is sold as a coproduct and ii) desliming in order to remove fractions smaller than 5μm by utilizing cyclones. Then the ore enters the flotation process - last stage of the beneficiation process – where the pyrochlore particles come into contact with flotation chemicals (hydrochloric & fluorosilic acid, triethylamene and lime), thereby removing the solid fractions and producing pyrochlore concentrate and barite as a coproduct which is also sold. The produced concentrate contains 55% Nb2O5 and 11% water and moves to the sintering unit, via tubes or is transported in bags while the separated and unused minerals enter the tailings dam. In the sintering unit, the pyrochlore concentrate undergoes pelletizing, sintering, crushing and classification. These units not only accumulate the material but are also responsible for removing sulfur and water from the concentrate. Then the concentrate enters the dephosphorization unit, where phosphorus and lead are removed from the concentrate. The removal of sulphur and phosphorus have to be executed because of the local pyrochlore ore composition. Then the concentrate undergoes a carbothermic reduction by using charcoal and petroleum coke, producing a refined concentrate, 63% Nb2O5 and tailings with high lead content that are disposed in the tailings dam again.

Markt für Eisenerzkonzentrat

technologyComment of iron ore beneficiation (IN): Milling and mechanical sorting. Average iron yield is 65% . The process so developed basically involves crushing, classification, processing of lumps, fines and slimes separately to produce concentrate suitable as lump and sinter fines and for pellet making. The quality is essentially defined as Fe contents, Level of SiO2 and Al2O3 contamination. The process aims at maximizing Fe recovery by subjecting the rejects/tailings generated from coarser size processing to fine size reduction and subsequent processing to recover iron values. technologyComment of iron ore beneficiation (RoW): Milling and mechanical sorting. Average iron yield is 84%. technologyComment of iron ore mine operation and beneficiation (CA-QC): Milling and mechanical sorting. Average iron yield is 75%. Specific data were collected on one of the two production site in Quebec. According to the documentation available, the technologies of the 2 mines seems similar. Uncertainity has been adjusted accordingly. technologyComment of niobium mine operation and beneficiation, from pyrochlore ore (BR, RoW): Open-pit mining is applied and hydraulic excavators are used to extract the ore with different grades, which is transported to stockpiles awaiting homogenization through earth-moving equipment in order to attain the same concentration. Conveyor belts (3.5 km) are utilized to transport the homogenized ore to the concentration unit. Initially, the ore passes through a jaw crusher and moves to the ball mills, where the pyrochlore grains (1 mm average diameter) are reduced to diameters less than 0.104 mm. In the ball mills, recycled water is added in order to i) granulate the concentrate and ii) remove the gas from the sintering unit. The granulated ore undergoes i) magnetic separation, where magnetite is removed and is sold as a coproduct and ii) desliming in order to remove fractions smaller than 5μm by utilizing cyclones. Then the ore enters the flotation process - last stage of the beneficiation process – where the pyrochlore particles come into contact with flotation chemicals (hydrochloric & fluorosilic acid, triethylamene and lime), thereby removing the solid fractions and producing pyrochlore concentrate and barite as a coproduct which is also sold. The produced concentrate contains 55% Nb2O5 and 11% water and moves to the sintering unit, via tubes or is transported in bags while the separated and unused minerals enter the tailings dam. In the sintering unit, the pyrochlore concentrate undergoes pelletizing, sintering, crushing and classification. These units not only accumulate the material but are also responsible for removing sulfur and water from the concentrate. Then the concentrate enters the dephosphorization unit, where phosphorus and lead are removed from the concentrate. The removal of sulphur and phosphorus have to be executed because of the local pyrochlore ore composition. Then the concentrate undergoes a carbothermic reduction by using charcoal and petroleum coke, producing a refined concentrate, 63% Nb2O5 and tailings with high lead content that are disposed in the tailings dam again. technologyComment of rare earth element mine operation and beneficiation, bastnaesite and monazite ore (CN-NM): Firstly, open pit, mining (drilling and blasting) is performed in order to obtain the iron ore and a minor quantity of rare earth ores (5−6 % rare earth oxide equivalent). Then, a two-step beneficiation process is applied to produce the REO concentrate. In the first step, ball milling and magnetic separation is used for the isolation of the iron ore. In the second step, the resulting REO tailing (containing monazite and bastnasite), is processed to get a 50% REO equivalent concentrate via flotation. technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of scandium oxide production, from rare earth tailings (CN-NM): See general comment. technologyComment of vanadium-titanomagnetite mine operation and beneficiation (CN): Natural rutile resources are scarce in China. For that reason, the production of titanium stems from high-grade titanium slag, the production of which includes 2 processes: i) ore mining & dressing process and ii) titanium slag smelting process. During the ore mining and dressing process, ilmenite concentrate (47.82% TiO2) is produced through high-intensity magnetic separation of the middling ore, which is previously produced as a byproduct during the magnetic separation sub-process of the vanadium titano-magnetite ore. During the titanium slag smelting process, the produced ilmenite concentrate from the ore mining & dressing process is mixed with petroleum coke as the reducing agent and pitch as the bonding agent. Afterwards it enters the electric arc furnace, where it is smelted, separating iron from the ilmenite concentrate and obtaining high-grade titanium slag.

Handlungsanleitung - Verwertung von organischen Reststoffen zur Erzeugung fruchtbarer Pflanzenkohlesubstrate und deren Nutzung im Gartenbau

Aufbauend auf den Erkenntnissen der Erforschung der Terra Preta do Indio im Amazonasgebiet sollten innovative Verfahren zur Anreicherung und langfristigen Speicherung von Kohlenstoff in Böden, für eine nachhaltige Landwirtschaft und einen nachhaltigen Gartenbau, gefördert werden. Pyrogener Kohlenstoff wurde als eine wichtige Komponente der Terra Preta do Indio beschrieben. Die positiven Eigenschaften dieser anthropogenen Schwarzerde führten zu einem wachsenden Interesse an der Verwendung von Holzkohle (Pflanzenkohle) zur Verbesserung von Böden und Komposten sowie verschiedenen, damit zusammenhängenden, Prozessen. Pflanzenkohle zeichnet sich, durch eine vielfältige Nutzung in einem integrierten, dezentralen und nachhaltigen Ansatz aus. In der vorliegenden Handlungsanleitung wird ausgehend von einer kurzen Einführung über den Stand der Forschung hinsichtlich der Terra Preta-Technologie aufgezeigt, wie aus pflanzlichen Reststoffen hochwertige Pflanzenkohlesubstrate hergestellt werden können. Dabei werden die Herstellung von Pflanzenkohle, die Kompostierung und die Milchsäure-Fermentation sowie die Anwendung von Pflanzenkohle und Pflanzenkohlesubstraten bei Topfpflanzen und im Freiland näher betrachtet. Des Weiteren wird auch die Verwertung von Fäkalien und Urin aus nachhaltigen Sanitärsysteme beschrieben. Die Handlungsanleitung schließt mit einem Kapitel zu den rechtlichen Belangen und der Güte- und Qualitätssicherung bei der Herstellung und Anwendung von Pflanzenkohlesubstraten. Die Erfahrungen aus dem TerraBoga-Projekt wurden in dieser Handlungsanleitung zusammengefasst und verallgemeinert. Ziel ist es, das Thema sowohl betrieblichen Einrichtungen wie z.B. Botanischen Gärten oder größeren Gärtnereien als auch interessierten Personen wie Kleingärtnern näher zu bringen. Quelle: Verlagsinformation

Impact Evaluation of the National Domestic Biogas Program (NDBP) in Rwanda

Das Projekt "Impact Evaluation of the National Domestic Biogas Program (NDBP) in Rwanda" wird vom Umweltbundesamt gefördert und von Rheinisch-Westfälisches Institut für Wirtschaftsforschung e.V. RWI, Kompetenzbereich Umwelt und Ressourcen durchgeführt. Like in most rural areas of developing countries, the vast majority of rural households in Rwanda uses charcoal or firewood for cooking purposes. This is associated with various negative effects on health, gender, and the disposable income of households. Furthermore, in densely populated Rwanda, the demand for woodfuels causes unsustainable wood extraction and, thereby, contributes to deforestation. Next to the dissemination of improved cooking stoves that increase the efficiency of woodfuel based cooking processes, the usage of biogas produced from dung is a potential remedy to these problems. Implemented by the Govern-ment of Rwanda with technical assistance of SNV, the National Domestic Biogas Program (NDBP) envisages disseminating 15,000 domestic biogas digesters in rural Rwanda. One digester generates gas to provide cooking energy that suffices for one or two families. The objective of the present study is to evaluate the impacts of biogas usage on the household's fuelwood consumption, energy expenditures, firewood collection time, and health. For this purpose, around 600 households will be surveyed to conduct a cross-sectional comparison of digester owners to non-owners. Around 300 biogas users will be drawn from the list of users available from the NDBP for inclusion in the treatment sample. All users will share the characteristic of having at least two cows, which is a precondition for being eligible for the programme's subsidy. In each village, in which a digester user will be interviewed, a household that does not own a digester but that has the same number of cows as the interviewed digester owner will be selected and interviewed for the comparison group. Since ownership of cows is a quite accurate proxy for wealth and since both the digester using household and its comparison household are living in the same village, the treatment and the comparison groups should be sufficiently comparable. Furthermore, multivariate methods will be used to control for socio-economic differences in education, income, or household size.

Die Deckung des Bedarfs an Brennmaterial fuer den Haushalt (in erster Linie Feuerholz oder Holzkohle) der laendlichen Bevoelkerung im Sudan und die Auswirkungen auf die Umwelt (z.B. Waldvernichtung)

Das Projekt "Die Deckung des Bedarfs an Brennmaterial fuer den Haushalt (in erster Linie Feuerholz oder Holzkohle) der laendlichen Bevoelkerung im Sudan und die Auswirkungen auf die Umwelt (z.B. Waldvernichtung)" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Völkerkunde durchgeführt.

Wir haben die Erde nur von unseren Kindern geliehen. Umweltveränderungen und Lebensweise im Zentraloman im 3. und 2. Jahrtausend v. Chr

Das Projekt "Wir haben die Erde nur von unseren Kindern geliehen. Umweltveränderungen und Lebensweise im Zentraloman im 3. und 2. Jahrtausend v. Chr" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Fachbereich Altertums- und Kunstwissenschaften, Institut für die Kulturen des Alten Orients (IANES) durchgeführt. Die arabische Halbinsel ist archäologisch erst wenig erforscht und zählt zu den trockensten Regionen der Welt. Dennoch gab es im östlichen Teil, der heute hauptsächlich vom Sultanat Oman eingenommen wird, bereits im 3. Jahrtausend v. Chr. eine kulturelle und wirtschaftliche Blütezeit. Wie es den Menschen damals gelungen ist, sich an die marginale Umwelt anzupassen, ist aber bislang nicht bekannt. Insbesondere fehlt eine präzise chronologische Differenzierung der Umweltveränderungen im Zentraloman, vor allem in Bezug auf die Verfügbarkeit von Wasser und die Vegetationsdynamik. Damit ließen sich Zusammenhänge zwischen der Lebensweise der Menschen, der Subsistenz sowie fehlgeschlagenen oder erfolgreichen Nachhaltigkeitsstrategien auf der einen und der fragilen Umwelt auf der anderen Seite herstellen. Das Verbundprojekt bringt einen erfahrenen Wissenschaftler des Kleinen Faches Vorderasiatische Archäologie mit Nachwuchswissenschaftler*innen Mittlerer und Großer Fächer (Biologie und Geologie) aus vier deutschen Hochschulen zusammen. Im Verlauf des Projektes sollen mittels verschiedener naturwissenschaftlicher und archäologischer Methoden umfassende Daten zu den Umweltbedingungen im Zentraloman im 3. und 2. Jahrtausend v. Chr. erhoben und ausgewertet sowie mit bekannten historischen Ereignissen dieser bedeutenden Epoche verknüpft werden. Zum Multiproxy-Ansatz des Projektes gehören die Analyse von Phytolithen, Pollenkörnern, Samen und Holzkohle zur Bestimmung der Pflanzenwelt, die Untersuchung von fossilen Schneckengehäusen, um Rückschlüsse auf saisonale Niederschlagsveränderungen und Temperaturen zu ziehen, sowie geomorphologische Analysen, die die Entwicklung von Umweltressourcen, vor allem Wasser, und die Anpassung der Gesellschaft darauf erarbeitet. Auch der Eingriff des Menschen in das Ökosystem und damit die Interaktion zwischen ihm und seiner Umwelt spielt eine wichtige Rolle für das Vorhaben.

Municipal wood energy center Rottweil

Das Projekt "Municipal wood energy center Rottweil" wird vom Umweltbundesamt gefördert und von Stadtwerke Rottweil durchgeführt. Objective: Electricity production by gasification of 6350 tonnes per year of fuel wood from forestry waste, communal wood waste and energy plantations in a three stage gas generator in the district of Rottweil. 100 ha of short rotation forestry (poplar and other species) will be planted in a first step. The power output amounts to 990 kWe and additional use of waste heat and gas for heating purpose is foreseen. The production amounts to 7,130,000 kWh. A particular attention will be given to the fuel wood logistics and notably to a 3 months capacity fuel wood storage. The payback time is estimated at 15 years. General Information: The 600 m3 silos, gasifier modules, cogeneration and control room are installed underground. This minimizes noise and also enables the trucks to drive over the silos for direct unloading. The woodchips are dried to approx. 25 per cent moisture content in a vertical rotating conical dryer by means of the available heat from the gas plant. The pre-dried woodchips enter the 3 stage EASIMOD 3500 kWh gasifier. The first stage is an underfeed co-current primary reactor producing primary gas with flying charcoal at about 650 deg. C. Gas is then reformed at approx. 900 deg. C in a separate Venturi burner with secondary air inlet and charcoal/activated carbon extraction. Tars and phenols are cracked. The third step is a separate glowing coke reactor which acts as a safety for tars and phenols cracking and as a gas heating value booster. Gas cleaning consists of dry dedusting in multicyclones, followed by a two-step scrubbing (impingement scrubber plus packed scrubber). The gas is cooled down to approx. 20 deg. C and the heat obtained is then used for predrying the fuel in the woodchips dryer. Ammonia washed out in the scrubbing water is stripped in a packed bed stripper. A waste water treatment plant is foreseen. The dryer, gasifier and gas scrubber are conceived as separate frame-mounted modules. The whole plant runs automatically. The electricity produced will be fed into the medium 20 KV voltage municipal grid. The heat recovered simultaneously will be used in a following step for the heating of a nearby village.

1 2 3 4 510 11 12