Der tiefe, große, kalkarme Mittelgebirgssee – zu 80 Prozent in „gutem“ Zustand Pünktlich zum Internationalen Weltwassertag am 22. März kürt das Umweltbundesamt (UBA) den Gewässertyp des Jahres 2017: den tiefen, großen, kalkarmen Mittelgebirgssee. Erfreulich ist die Entwicklung der Seen unter ökologischen Maßstäben: Rund 80 Prozent erreichen das „gute“ ökologische Potenzial nach den Kriterien der EU-Wasserrahmenrichtlinie. Alle 26 Vertreter dieses Typs in Deutschland sind übrigens Talsperren. Beispiele sind die Leibis-Lichte-Talsperre in Thüringen, Muldenberg und Eibenstock in Sachsen, Rappbodetalsperre in Sachsen-Anhalt, Oleftalsperre in Nordrhein-Westfalen, Granetalsperre in Niedersachsen und Förmitztalsperre in Bayern. Naturnahe Gewässer wie Talsperren sind äußerst wertvolle Lebensräume für eine Vielzahl von Arten. Typische Bewohner sind der Flussbarsch ( Perca fluviatilis ), ein sehr anpassungsfähiger Fisch, der bis 70 Zentimeter lang werden kann und sich unter anderem von Insekten ernährt, die er an der Wasseroberfläche erbeutet. Auch gefährdete „Rote Liste-Arten“ wie die biegsame Glanzleuchteralge ( Nitella flexilis ) kommen in diesen Talsperren vor. Glanzleuchteralgen überwuchern die Gewässerböden oft wie ein dichter Rasen, der Jungfischen ein ideales Versteck vor Fressfeinden bietet. Dem Haubentaucher und anderen Wasservögeln dienen Algen oder die im Algenrasen lebenden Kleintiere als Nahrung. Die Einzugsgebiete der Talsperren sind oft sehr waldreich, die Uferbereiche und Böschungen sehr steil. An den Staumauern dominieren Steinschüttungen und große Blöcke, an den Zuläufen und Uferbereichen feine Kiese und Sande. Durch den Einfluss von Mooren und sauren Waldböden im Einzugsgebiet haben Talsperren meist erhöhte Gehalte an Huminstoffen, welche den pH-Wert senken und damit maßgeblich die Artenzusammensetzung bestimmen. Talsperren dienen vorrangig der Trinkwassergewinnung, dem Hochwasserschutz sowie der Stromerzeugung. Hinzu kommen in einigen Talsperren (Biggetalsperre, Sösetalsperre) die Fischerei und eine beschränkte Freizeitnutzung. Bereits 80 Prozent der tiefen, großen, kalkarmen Mittelgebirgsseen Deutschlands erreichen schon heute das durch die EU- Wasserrahmenrichtlinie geforderte „gute“ ökologische Potenzial – das ist deutlich mehr als bei allen anderen Gewässertypen. Der Gewässertyp des Jahres 2017 hat damit einen Vorbildcharakter für andere deutsche Gewässer, die weitgehend noch keinen guten ökologischen Zustand aufweisen. Dies zeigen die Ergebnisse einer aktuellen Studie des Umweltbundesamtes mit dem Titel: „Die Wasserrahmenrichtlinie – Deutschlands Gewässer 2015“. Ein wichtiger Schlüssel, die Ziele der EU-Wasserrahmenrichtlinie zu erreichen ist eine umweltschonende und auf die Trinkwassernutzung ausgerichtete Bewirtschaftung.
Die Hydrolyse ist ein entscheidender Prozess für den Abbau vieler wasserlöslicher Substanzen in der Umwelt. Hydrolysestudien mit neuen Substanzen werden derzeit in Reinstwasser durchgeführt. Es besteht die Möglichkeit, dass in natürlichen Gewässern vorkommende (natürliche oder künstliche) Partikel einen Einfluss auf die Hydrolyse von Spurenstoffen haben. Um dies zu testen, wurde in dieser Studie der hydrolytische Abbau von drei Substanzen in reinem Wasser sowie in Anwesenheit von Mikroplastikfasern, Sediment und Huminsäuren untersucht. Bei den ausgewählten Substanzen handelte es sich um das Fungizid Trifloxystrobin (TFX), das Benzodiazepin Oxazepam sowie um (Methoxycarbonylmethyl)triphenylphosphonium-(MCM-TPP-)bromid, ein Zwischenprodukt bei der Synthese von Alkenen. Im Fall von TFX konnte kein Einfluss der Störstoffe auf die Hydrolyse nachgewiesen werden. Auch mit Oxazepam wurde kein signifikanter Einfluss beobachtet, obwohl die Anwesenheit von Sediment und Huminsäuren zu einem leichten, aber nicht signifikanten, Anstieg der Halbwertszeit führte. Im Fall von MCM-TPP führte die Zugabe von Sediment als auch von Huminsäuren zu einer geringen, aber signifikanten Verlangsamung des Abbaus, während Mikroplastikfasern keinen Einfluss auf die Hydrolysegeschwindigkeit hatten. Die in natürlichen Gewässern vorkommende Sediment-Partikel und Huminstoffe können zu einer reduzierten Hydrolyserate bestimmter Spurenstoffe führen. Dies ist vermutlich für sorbierende kationische Verbindungen besonders wahrscheinlich. Dieser Effekt ist allerdings relativ klein im Vergleich zum Einfluss anderer Parameter wie der Änderung von pH-Wert und Temperatur. Auf Grundlage dieser Ergebnisse ergibt sich nicht die Notwendigkeit, die Berücksichtigung verschiedener Störstoffe bei der Bewertung von Chemikalien zu fordern. Allerdings wäre es sinnvoll, zusätzlich zur Konzentration der Ausgangsverbindung auch immer die Konzentration der wichtigsten Hydroly-seprodukte zu bestimmen, um geschlossene Massenbilanzen zu erhalten. Quelle: Forschungsbericht
Das Projekt "EU-Projekt INTAS 96-2063" wird vom Umweltbundesamt gefördert und von Universität Oldenburg, Fachbereich 8 Physik, Arbeitsgruppe Meeresphysik durchgeführt. The project aims at the preservation of vital water areas against pollutions, so a balanced system of express monitoring is necessary. In such areas, the pollution pattern is basically very complex. The main objects are oils as films on the water surface and as dissolved-emulsified fractions in the water column, other organic contaminations, protein-like compounds, humic substances and phytoplankton
Den allgemeinen physikalisch-chemischen Komponenten kommt eine unterstützende Bedeutung bei der Bewertung des ökologischen Zustandes bzw. Potentials zu. Sie dienen: der Ergänzung und Unterstützung der Interpretation der Ergebnisse der biologischen Qualitätskomponenten, als Beitrag zur Ursachenklärung im Falle „mäßiger“ oder schlechterer ökologischer Zustands- bzw. Potenzialbewertungen, der Maßnahmenplanung in Zusammenhang mit den biologischen und hydromorphologischen Qualitätskomponenten der Überprüfung des Verschlechterungsverbotes und der diesbezüglich geforderten Prognose der Entwicklung der Qualitätskomponenten als wichtige Grundlage der Erfolgskontrolle Zu den allgemeinen physikalisch-chemischen Komponenten der Seen zählen folgende Qualitätskomponenten und Parameter: Sichttiefe: Sichttiefe Temperaturverhältnisse: Wassertemperatur Sauerstoffhaushalt: Sauerstoffgehalt, Sauerstoffsättigung Salzgehalt: Chlorid, Versauerungszustand: pH-Wert, Säurekapazität Ks (bei versauerungsgefährdeten Gewässern) Nährstoffverhältnisse: Gesamtphosphor, ortho-Phosphat-Phosphor, Gesamtstickstoff, Nitrat-Stickstoff, Ammonium-Stickstoff In der Tabelle 1 sind die Werte der allgemeinen physikalisch-chemischen Komponenten zusammengestellt, die gefordert sind, um damit den sehr guten ökologischen Zustand bzw. das höchste ökologische Potenzial zu erreichen. Tab. 1: Anforderungen an den sehr guten ökologischen Zustand bzw. das höchste ökologische Potenzial: Werte der allgemeinen physikalisch-chemischen Komponenten der Seetypen. See-Typ Phytoplankton-See-Subtypen oder Typgruppen Maximaler Trophiestatus 1 Gesamtphosphor (Gesamt-P) Saisonmittel 2 (μg/l) Sichttiefe Saisonmittel 2 (m) Grenzbereich sehr gut / gut Grenzbereich sehr gut / gut 1 1 mesotroph 1 (1,75) 10 - 15 2, 3 2+3 mesotroph 1 (1,75) 10 - 15 4 4 (sehr) oligotroph (1,25) 6 - 8 7,0 - 4,5 5, 7, 8, 9 7 + 9 mesotroph 1 (1,5) 8 - 12 3 6,0 - 4,5 6 6.1 mesotroph 2 (2,25) 18 - 25 3,5 - 2,3 6 6.2 mesotroph 2 (2,5) 25 - 35 3,0 - 2,0 6 6.3 eutroph 1 (2,75) 30 - 40 2,5 - 1,6 5, 7, 8, 9 5 + 8 oligotroph (1,75) 9 - 14 3 5,5 - 4,0 10 10.1 mesotroph 1 (2,0) 17 - 25 5,0 - 3,5 10 10.2 mesotroph 2 (2,25) 20 - 30 4,0 - 3,0 11 11.1 mesotroph 2 (2,5) 25 - 35 3,0 - 2,3 11 11.2 eutroph 1 (2,75) 28 - 35 4 3,0 - 2,0 12 12 eutroph 1 (3,50) 40 - 50 5 2,5 - 1,5 13 13 mesotroph 1 (1,75) 15 - 22 5,5 - 3,5 14 14 mesotroph 2 (2,25) 20 - 30 4,0 - 2,5 1 Maß für die Menge des Nährstoffangebotes im Referenzzustand. 2 Werte für den Parameter Gesamtphosphor als Mittelwert der Vegetationsperiode von 1. April bis 31. Oktober. Je nach Witterung kann der Zeitraum auf die Monate März und November ausgedehnt werden. 3 In stark durch Huminstoffe geprägten Seen können höhere Gesamt-P-Werte insbesondere durch degradierte Moore im Einzugsgebiet auftreten. 4 Im sehr flachen Seetyp 11.2 können Phosphorrücklösungsprozesse zu deutlich höheren Konzentrationen führen. 5 Flussseen mit hoher Retentionsleistung (z. B. Seen am Beginn einer Seenkette) können sehr hohe Trophiezustände im Referenzzustand aufweisen, welche zum Teil weit in den eutrophen Status hineinreichen. Die Gesamtphosphorkonzentrationen können in diesen Seen zwischen 40 und rund 100 μg/l im Saisonmittel liegen. In der Tabelle 2 sind die Werte der allgemeinen physikalisch-chemischen Komponenten zusammengestellt, die gefordert sind, um damit den guten ökologischen Zustand bzw. das gute ökologische Potenzial zu erreichen. Tab. 2: Anforderungen an den guten ökologischen Zustand bzw. das gute ökologische Potenzial: Werte der allgemeinen physikalisch-chemischen Komponenten der Seetypen. See-Typ Phytoplankton-See-Subtypen oder Typgruppen Maximaler Trophiestatus 1 Gesamtphosphor (Gesamt-P) Saisonmittel 2 (μg/l) Sichttiefe Saisonmittel 2 (m) Grenzbereich gut / mäßig Grenzbereich gut / mäßig 1 1 mesotroph 1 (1,75) 20 – 26 3,0 – 2,0 2, 3 2+3 mesotroph 1 (1,75) 20 – 26 3,0 – 2,0 4 4 (sehr) oligotroph (1,25) 9 – 12 4,5 – 3,0 5, 7, 8, 9 7 + 9 mesotroph 1 (1,5) 14 – 20 3 4,5 – 3,0 6 6.1 mesotroph 2 (2,25) 30 – 45 2,3 – 1,6 6 6.2 mesotroph 2 (2,5) 35 – 50 2,0 – 1,5 6 6.3 eutroph 1 (2,75) 45 – 70 1,6 – 1,2 5, 7, 8, 9 5 + 8 oligotroph (1,75) 18 – 25 3 4,0 – 3,0 10 10.1 mesotroph 1 (2,0) 25 – 40 3,5 – 2,0 10 10.2 mesotroph 2 (2,25) 30 – 45 3,0 – 2,0 11 11.1 mesotroph 2 (2,5) 35 – 45 2,3 – 1,5 11 11.2 eutroph 1 (2,75) 35 – 55 4 2,0 – 1,3 12 12 eutroph 1 (3,50) 60 – 90 5 1,2 – 0,8 13 13 mesotroph 1 (1,75) 25 – 35 3,5 – 2,5 14 14 mesotroph 2 (2,25) 30 – 45 2,5 – 1,5 1 Maß für die Menge des Nährstoffangebotes im Referenzzustand. 2 Werte für den Parameter Gesamtphosphor als Mittelwert der Vegetationsperiode von 1. April bis 31. Oktober. Je nach Witterung kann der Zeitraum auf die Monate März und November ausgedehnt werden. 3 In stark durch Huminstoffe geprägten Seen können höhere Gesamt-P-Werte insbesondere durch degradierte Moore im Einzugsgebiet auftreten. 4 Im sehr flachen Seetyp 11.2 können Phosphorrücklösungsprozesse zu deutlich höheren Konzentrationen führen. 5 Flussseen mit hoher Retentionsleistung (z. B. Seen am Beginn einer Seenkette) können sehr hohe Trophiezustände im Referenzzustand aufweisen, welche zum Teil weit in den eutrophen Status hineinreichen. Die Gesamtphosphorkonzentrationen können in diesen Seen zwischen 40 und rund 100 μg/l im Saisonmittel liegen.
Das Projekt "Sub project G" wird vom Umweltbundesamt gefördert und von bbe Moldaenke GmbH durchgeführt. Die Firma bbe Moldaenke GmbH hat ihren Fokus zum einen auf einem neuartigen UV-Fluoreszenzspektrometer, dessen Einsatz auf die Gegebenheiten des Chao-Sees angepasst und auf dessen Toxine optimiert werden muss. Außerdem können mit diesem Gerät die Flockungs- und andere Wasserwerksprozesse optimiert werden, wenn die wesentlichen Komponenten der Huminstofffraktionen erkannt und diese in die Berechnung integriert werden können. Dieses Gerät soll ebenso wie das zu optimierende Daphnientoximeter einem Frühwarnsystem zuarbeiten Die 4 Arbeitspakete beschreiben (s. auch Balkenplan) die Literaturstudie und folgend die Hardwareanpassungen des Fluoreszenz- und Absorptionsspektrometers inklusive seiner Algorithmen mit seinen Test in deutschen Wasserwerken, bevor es am Chao-See eingesetzt wird. Nach Erprobungsphase wird das Instrument in ein bojenfähiges Gerät weiterentwickelt. Des Weiteren wird ein Daphnientoximeter an die Gegebenheiten des Chao Sees angepasst und die Software um gänzlich neue Auswerteparameter ergänzt. In der letzten Phase werden alle Geräte auf ihre Langzeitmessfähigkeit getestet und im Frühwarnsystem eingesetzt.
Das Projekt "Der Einfluss der Vegetation auf den Kohlenstoff-Fluss in die Atmosphaere und die Ozeane" wird vom Umweltbundesamt gefördert und von Universität Osnabrück, Fachbereich 5 Biologie,Chemie durchgeführt. Fuer eine Verbesserung der globalen CO2-Umsatz-Modelle ist es notwendig, unsere Kenntnisse des CO2-Flusses aus der Biosphaere in die Atmosphaere und der Kohlenstoff-Entnahme aus der Biosphaere in Form von Holz und Huminstoffen zu verbessern. Die Antragsteller schlagen deshalb vor, eine neue Kohlenstoffbilanz der Oekosysteme aus vorhandenen Statistiken und Teilmodellen neu zu entwickeln. Das neue globale Modell soll in sechs Regionen unterteilt werden, jeder Region soll die bestmoegliche Datenauswertung erteilt werden, und es soll in einem geeigneten EDV-Paket synthetisiert, interpretiert und zur weiteren Verarbeitung durch andere Forschergruppen veroeffentlicht werden.
Das Projekt "Sub project: Electron transfer reactions at iron mineral surfaces in the presence of organic sorbates" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Zentrum für Angewandte Geowissenschaften - Umweltmineralogie und Umweltchemie durchgeführt. Redox reactions at iron mineral surfaces play an important role in determining the overall biogeochemical milieu in anoxic groundwater systems. Previous studies have shown that oxidation of sorbed ferrous iron at mineral phases may cause remodelling of the mineralwater interphase and thus may affect electron transfer processes in anoxic aquifers. In the first funding period, we studied in detail how and at which conditions oxidation of ferrous iron at mineral surfaces affects electron transfer processes. Using carbon tetrachloride (CCl4) as model oxidant, we could further demonstrate, that the proposed reactive tracer approach, which is based on changes of the stable isotopic composition of model oxidants, could be successfully applied to characterize the surface reactivity and dynamics of surface bound Fe(II) species at iron(III)hydroxides. Up to date, process based studies on surface mediated transformation of redox active solutes in iron mineral systems have been conducted primarily in model systems devoid of natural organic matter. In natural systems, however, mineral surfaces are inevitably in contact with OM. Sorbed DOM is likely to affect heterogeneous electron transfer processes due to its interactions with iron both in aqueous solution and at the mineral surface. On one hand, DOM sorption at iron hydroxides may interfere with the formation of reactive Fe(II) surface sites. On the other hand, DOM contain redox active quinone moieties and may act as a mediator enhancing the electron-transfer across the mineral surface. In this follow-up project we propose to investigate the effects of various organic sorbates such as redox-inert organic acids as well as redox-active quinones, humic substances and DOM on electron transfer reactions at iron mineral surfaces. Furthermore, we will investigate the effects of sulfide as additional redox active natural component on DOM-iron interfacial redox processes.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von Hochschule für Technik und Wirtschaft Dresden, Lehrbereich Wasserwesen durchgeführt. Zu den Spätfolgen des Braunkohletagebaus in Deutschland gehört die großflächige Eisen- und Sulfatbelastung von Grund- und Oberflächenwässern. Erstes Ziel des SULFAMOS-Projektes ist es, ein Verfahren auf Basis der kontinuierlichen Vorwärtsosmose zu entwickeln und zu demonstrieren, um Sulfat aus Abwässern, Oberflächen- und Grundwässern abzureichern, so dass sie als Bewässerungs- und Trinkwasser nutzbar sind. Zweites Ziel ist es, das in Form von Gips ausgefällte Sulfat als Rohstoff nutzbar zu machen. Das Gesamtvorhaben beinhaltet die Entwicklung eines neuen Typs Hohlfasermembran mit robuster Außenbeschichtung, Entwicklung eines Tauchmoduls für diese Membranen und Entwicklung einer Verfahrenskombination aus Membranmodul und einem Fällungsmodul, das einen kontinuierlichen Betrieb ohne Verblocken der Membranen ermöglicht. Anhand einer Demonstrationsanlage sind das Verfahren im Feld zu testen und die Produkte Wasser und Gips hinsichtlich ihrer Verwendungsmöglichkeiten zu qualifizieren. Hierfür erfolgen im vorliegenden Teilvorhaben hydraulische und chemische Untersuchungen der Membranmodule zur Gewinnung von Daten für hydraulische und hydrochemische Simulationen zur Auslegung und Optimierung der Module und des Gesamtverfahrens. Mit anoxischem, eisen- und sulfathaltigem Grundwasser werden Laborversuche zur Wasseraufbereitung durchgeführt. Ein Schwerpunkt ist die Wasseranalytik für die Projektpartner, insbesondere im Rahmen der Praxistests. Insbesondere wird der Einfluss von Störstoffen (Phosphat, Huminstoffe) auf die Verfahrenskombination im Praxisbetrieb untersucht. Der gewonnene Gips wird charakterisiert, die erwartete Färbung durch Fe und Entfärbungsschritte untersucht und das Einsatzpotential im Bauwesen mit Herstellern und Nutzern bewertet.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Hessische Industriemüll, Bereich Altlastensanierung (ASG) durchgeführt. Die Untersuchungen an 2,4,6-Trinitrotoluol(TNT)-kontaminierten Boeden zeigten, dass mikrobielle Verfahren wie Bioreaktor- oder in-situ-Verfahren prinzipiell zur Sanierung solcher Boeden geeignet sind. Die mikrobiologische Standortcharakterisierung zeigte, dass die vorhandene Mikroflora in der Lage ist, TNT zu transformieren. Da eine Mineralisierung in Gegenwart von Boden nicht erreicht werden kann, besteht fuer beide Verfahren die einzige Moeglichkeit, TNT zu eliminieren, in einer Humifizierung, d.h. einem kovalenten Einbau in die Huminstoffmatrix. Fuer die Humifizierung ist die Aktivitaet von Mikroorganismen notwendig; nach Reduktion von TNT zu 2,4-Diamino-6-Nitrotoluol kann dieses z.B. mittels des Enzyms Peroxidase eingebaut werden. So gebundene Metabolite sind auch unter drastischen Umweltbedingungen nicht freisetzbar. Ob ein bakterieller Abbau der Huminstoffe eine laengerfristige Freisetzung verursacht, konnte nicht geklaert werden. Eine Bindung von TNT und dessen Metaboliten an Tonminerale spielt bei den Sanierungsverfahren nur insofern eine Rolle, als sie Sanierungsdauer und erreichbare Sanierungsziele beeinflusst (Reste des TNT bleiben anscheinend irreversibel gebunden). Eine Simulation der in-situ-Sanierung in Saeulenversuchen und in-situ-Box-Modellen zeigte, dass eine Aktivierung der Mikroorganismen (Zufuehrung von C- und N-Quellen) die Elution der Schadstoffe drastisch verringert und die Humifizierung foerdert. Das in-situ-Verfahren wurde so weit entwickelt, dass eine Uebertragung in den Pilotmassstab ratsam erscheint.Im zweiten Teil der Untersuchungen wurde ein zweistufiges anaerobes/aerobes Bioreaktorverfahren zur Behandlung von Bodensuspensionen entwickelt, bei dem TNT teilweise bis Triaminotoluol (TAT) reduziert wird, welches irreversibel an die Bodenmatrix bindet und unter aeroben Bedingungen polymerisiert. Daneben laufen wahrscheinlich die gleichen Reaktionen ab wie beim in-situ-Verfahren.
Temperatur (02.01.2) Die Temperatur ist eine bedeutende Einflussgröße für alle natürlichen Vorgänge in einem Gewässer. Biologische, chemische und physikalische Vorgänge im Wasser sind temperaturabhängig , z.B. Zehrungs- und Produktionsprozesse, desgleichen Adsorption und Löslichkeit für gasförmige, flüssige und feste Substanzen. Dies gilt auch für Wechselwirkungen zwischen Wasser und Untergrund oder Schwebstoffen und Sedimenten sowie zwischen Wasser und Atmosphäre. Die Lebensfähigkeit und Lebensaktivität der Wasserorganismen sind ebenso an bestimmte Temperaturgrenzen oder -optima gebunden wie das Vorkommen unterschiedlich angepasster Organismenarten und Fischbesiedelungen nach Flussregionen in Mitteleuropa. Die Darstellung der Heizkraftwerke in der Karte sowie deren Einfluss auf die Gewässertemperatur sind bei der Betrachtung zu berücksichtigen. Aus der Temperaturverteilungskarte wird deutlich sichtbar, dass die Wärmeeinleitungen in die Berliner Gewässer in den letzten Jahren rückläufig war, vor allem im Bereich der Spreemündung und der Havel. Die kritische Schwelle von 28° C wurde nicht überschritten, die Maxima bzw. 95-Perzentile liegen im Bereich um 25° C. Ende der neunziger Jahre wurden sporadisch noch Temperaturen über 28° C gemessen. Der Rückgang der Wärmefrachten der Berliner Kraftwerke in die Gewässer beträgt seit 1993 ca. 13 Mio. GJ und ist im Wesentlichen auf den Anschluss des Berliner Stromnetzes an das westeuropäische Verbundnetz zurückzuführen. Durch die Liberalisierung des Strommarktes bedingte sinkende Strombeschaffungskosten und damit verbundene geringere Erzeugung in den Berliner Kraftwerken hat zur Stilllegung bzw. Teilstilllegung von Kraftwerken geführt, die zum Teil mit Modernisierungen zur Effizienzsteigerung verbunden waren. Die derzeitige Wärmefracht beträgt ca. 10 Mio. GJ. Sauerstoffgehalt (02.01.1) Der Sauerstoffgehalt des Wassers ist das Ergebnis sauerstoffliefernder und -zehrender Vorgänge . Sauerstoff wird aus der Atmosphäre eingetragen, wobei die Sauerstoffaufnahme vor allem von der Größe der Wasseroberfläche, der Wassertemperatur, dem Sättigungsdefizit, der Wasserturbulenz sowie der Luftbewegung abhängt. Sauerstoff wird auch bei der Photosynthese der Wasserpflanzen freigesetzt, wodurch Sauerstoffübersättigungen auftreten können. Beim natürlichen Abbau organischer Stoffe im Wasser durch Mikroorganismen sowie durch die Atmung von Tieren und Pflanzen wird Sauerstoff verbraucht . Dies kann zu Sauerstoffmangel im Gewässer führen. Der kritische Wert liegt bei 4 mg/l, unterhalb dessen empfindliche Fischarten geschädigt werden können. Sowohl aus den Werten der Messstationen als auch aus den Stichproben ist eine Verbesserung des Sauerstoffgehaltes der Berliner Gewässer nur teilweise ablesbar. Kritisch sind nach wie vor die Gewässer, in die Mischwasserüberläufe stattfinden. In der Mischwasserkanalisation werden Regenwasser und Schmutzwasser in einem Kanal gesammelt und über Pumpwerke zu den Klärwerken gefördert. Dieses Entwässerungssystem ist in der gesamten Innenstadt Berlins präsent. (vgl. Karte 02.09) Im Starkregenfall reicht die Aufnahmekapazität der Mischkanalisation nicht aus und das Gemisch aus Regenwasser und unbehandeltem Abwasser tritt in Spree und Havel über. Infolge dessen kann es durch Zehrungsprozesse zu Sauerstoffdefiziten kommen. Besonders extreme Ereignisse lösen in einigen Gewässerabschnitten (v.a. Landwehrkanal und Neuköllner Schifffahrtskanal) sogar Fischsterben aus. Um die Überlaufmengen künftig deutlich zu verringern, werden im Rahmen eines umfassenden Sanierungsprogramms zusätzliche unterirdische Speicherräume aktiviert bzw. neu errichtet. Die kritischen Situationen im Tegel Fließ sind auf nachklingende Rieselfeldeinflüsse bzw. Landwirtschaft zurückzuführen. TOC (02.01.10) und AOX (02.01.7) Die gesamtorganische Belastung in Oberflächengewässern wird mit Hilfe des Leitparameters TOC (total organic carbon) ermittelt. Die Summe der “Adsorbierbaren organisch gebundenen Halogene” wird über die AOX -Bestimmung wiedergegeben. Bei der Bestimmung des Summenparameters AOX werden die Halogene (AOJ, AOCl, AOBr) in einer Vielfalt von Stoffen mit ganz unterschiedlichen Eigenschaften erfasst. Dieser Parameter dient insofern weniger der ökotoxikologischen Gewässerbewertung, sondern vielmehr in der Gewässerüberwachung dem Erfolgsmonitoring von Maßnahmen zur Reduzierung des Eintrags an “Adsorbierbaren organisch gebundenen Halogenen”. Beide Messgrößen lassen prinzipiell keine Rückschlüsse auf Zusammensetzung und Herkunft der organischen Belastung zu. Erhöhte AOX – Befunde in städtischen Ballungsräumen wie Berlin dürften jedoch einem vornehmlich anthropogenen Eintrag über kommunale Kläranlagen zuzuschreiben sein. TOC-Einträge können sowohl anthropogenen Ursprungs als auch natürlichen Ursprungs z.B. durch den Eintrag von Huminstoffen aus dem Einzugsgebiet bedingt sein, was die ökologische Aussagefähigkeit des Parameters teilweise einschränkt. Bewertungsmaßstab ist für beide Messgrößen das 90-Perzentil. Unter Anwendung dieses strengen Maßstabs wird die Zielgröße Güteklasse II für den TOC bereits in den Zuflüssen nach Berlin und im weiteren Fließverlauf durch die Stadt in sämtlichen Haupt- und Nebenfließgewässern überschritten . Für AOX liegen die Messwerte nicht durchgängig für alle Fließabschnitte der Berliner Oberflächengewässer vor. Dennoch lässt sich ableiten, dass lediglich in den Gewässerabschnitten, die unmittelbar den Klärwerkseinleitungen ausgesetzt sind (Neuenhagener Fließ, Wuhle, Teltowkanal, Nordgraben), leicht erhöhte AOX – Messwerte auftreten und die Zielvorgabe knapp überschritten wird (Güteklasse II bis III). Ammonium-Stickstoff (02.01.3), Nitrit-Sickstoff (02.01.5), Nitrat-Stickstoff (02.01.4) Stickstoff tritt im Wasser sowohl molekular als Stickstoff (N 2 ) als auch in anorganischen und organischen Verbindungen auf. Organisch gebunden ist er überwiegend in pflanzlichem und tierischem Material (Biomasse) festgelegt. Anorganisch gebundener Stickstoff kommt vorwiegend als Ammonium (NH 4 ) und Nitrat (NO 3 ) vor. In Wasser, Boden und Luft sowie in technischen Anlagen (z.B. Kläranlagen) finden biochemische (mikrobielle) und physikalisch-chemische Umsetzungen der Stickstoffverbindungen statt (Oxidations- und Reduktionsreaktionen). Eine Besonderheit des Stickstoffeintrages ist die Stickstofffixierung, eine biochemische Stoffwechselleistung von Bakterien und Blaualgen (Cyanobakterien), die molekularen gasförmigen Stickstoff aus der Atmosphäre in den Stoffwechsel einschleusen können. Innerhalb Berlins ist der Eintrag über die Kläranlagen die Hauptbelastungsquelle . Durch die Regenentwässerungssysteme werden sporadisch kritische Ammoniumeinträge verursacht. Ammonium kann in höheren Konzentrationen erheblich zur Belastung des Sauerstoffhaushalts beitragen, da bei der mikrobiellen Oxidation (Nitrifikation) von 1 mg Ammonium-Stickstoff zu Nitrat rd. 4,5 mg Sauerstoff verbraucht werden. Dieser Prozess ist allerdings stark temperaturabhängig. Erhebliche Umsätze erfolgen nur in der warmen Jahreszeit . Bisweilen überschreitet die Sauerstoffzehrung durch Nitrifikationsvorgänge die durch den Abbau von Kohlenstoffverbindungen erheblich. Toxikologische Bedeutung kann das Ammonium bei Verschiebung des pH-Wertes in den alkalischen Bereichen erlangen, wenn in Gewässern mit hohen Ammoniumgehalten das fischtoxische Ammoniak freigesetzt wird. Nitrit-Stickstoff tritt als Zwischenstufe bei der mikrobiellen Oxidation von Ammonium zu Nitrat ( Nitrifikation ) auf. Nitrit hat eine vergleichsweise geringere ökotoxikologische Bedeutung. Mit zunehmender Chloridkonzentration verringert sich die Nitrit-Toxizität bei gleichem pH-Wert. Während für die Spree, Dahme und Havel im Zulauf nach Berlin die LAWA – Qualitätsziele (Güteklasse II) für NH 4 -N eingehalten werden, werden die Ziele überall dort überschritten, wo Gewässer dem Ablauf kommunaler Kläranlagen und Misch- und Regenwassereinleitungen ausgesetzt sind. Die Ertüchtigung der Nitrifikationsleistungen in den Klärwerken der Berliner Wasserbetriebe seit der Wende führte stadtweit zu einer signifikanten Entlastung der Gewässer mit Gütesprüngen um drei bis vier Klassen . Viele Gewässerabschnitte konnten den Sprung in die Güteklasse II schaffen. Die Werte für die Wuhle und in Teilen für die Vorstadtspree sind für den jetzigen Zustand nicht mehr repräsentativ, da mit der Stilllegung des Klärwerkes Falkenberg im Frühjahr 2003 eine signifikante Belastungsquelle abgestellt wurde. Mit der Stillegung des Klärwerkes Marienfelde (Teltowkanal, 1998) und der Ertüchtigung von Wassmansdorf konnte die hohe Belastung des Teltowkanals ebenfalls deutlich reduziert werden. Das Neuenhagener Mühlenfließ ist nach wie vor sehr hoch belastet. Hier besteht Handlungsbedarf beim Klärwerk Münchehofe . Die Stadtspree (von Köpenick bis zur Mündung in die Havel) weist durchgängig die Güteklasse II bis III auf und verfehlt damit die LAWA – Zielvorgabe ebenso wie die Unterhavel , der Teltowkanal und die mischwasserbeeinflussten innerstädtischen Kanäle . In 2001 ist eine Überschreitung der LAWA – Zielvorgabe für Nitrit-Stickstoff (90-Perzentil) in klärwerksbeeinflussten Abschnitten von Neuenhagener Fließ und Wuhle (s. Anmerkung oben) sowie in drei Abschnitten des Teltowkanals zu verzeichnen. Die Nitratwerte der Berliner Gewässer sind durchgehend unkritisch. Chlorid (02.01.8) In den Berliner Gewässern liegt der natürliche Chloridgehalt unter 60 mg/l. Anthropogene Anstiege der Chloridkonzentration erfolgen durch häusliche und industrielle Abwässer sowie auch durch Streusalz des Straßenwinterdienstes. Einem typischen Jahresverlauf unterliegt das Chlorid durch den sommerlichen Rückgang des Spreewasserzuflusses und der damit verbundenen Aufkonzentrierung in der Stadt. Bei Chloridwerten über 200 mg/l können für die Trinkwasserversorgung Probleme auftauchen. Die Chloridwerte der Berliner Gewässer stellen kein gewässerökologisches Problem dar. Sulfat (02.01.9) Der Beginn anthropogener Beeinträchtigungen im Berliner Raum wird mit etwa 120 mg/l angegeben. Die Güteklasse II (< 100 mg/l) kann somit für unsere Region nicht Zielgröße sein. Die Bedeutung des Parameters Sulfat liegt im Spree-Havel-Raum weniger in seiner ökotoxikologischen Relevanz, als vielmehr in der Bedeutung für die Trinkwasserversorgung. Der Trinkwassergrenzwert liegt bei 240 mg/l (v.a. Schutz der Nieren von Säuglingen vor zu hoher Salzfracht). Die Zuläufe nach Berlin weisen Konzentrationen von 150 bis 180 mg/l auf. Hier ist in Zukunft mit einer Zunahme der Sulfatfracht aus den Bergbauregionen der Lausitz zu rechnen. Folgende Einträge in die Gewässer sind im Spreeraum von Relevanz: Eintrag über Sümpfungswässer aus Tagebauen Direkter Eintrag aus Tagebaurestseen, die zur Wasserspeicherung genutzt werden indirekter Eintrag über Grundwässer aus Tagebaugebieten Einträge des aktiven Bergbaus Atmosphärischer Schwefeleintrag (Verbrennung fossiler Brennstoffe) Diffuse und direkte Einträge (Kläranlageneinleitungen, Abschwemmungen, Landwirtschaft) In gewässerökologischer Hinsicht können erhöhte Sulfatkonzentrationen eutrophierungsfördernd sein. Sulfat kann zur Mobilisierung von im Sediment festgelegten Phosphor führen. Gesamt-Phosphor (02.01.6) Phosphor ist ein Nährstoffelement, das unter bestimmten Bedingungen Algenmassenentwicklungen in Oberflächengewässern verursachen kann (nähere Erläuterungen siehe Karte 02.03). Unbelastete Quellbäche weisen Gesamt-Phosphorkonzentrationen von weniger als 1 bis 10 µg/l P, anthropogen nicht belastete Gewässeroberläufe in Einzugsgebieten mit Laubwaldbeständen 20-50 µg/l P auf. Die geogenen Hintergrundkonzentrationen für die untere Spree und Havel liegen in einem Bereich um 60 bis 90 µg/l P. Auf Grund der weitgehenden Verwendung phosphatfreier Waschmittel und vor allem auch der fortschreitenden Phosphatelimination bei der Abwasserbehandlung ist der Phosphat-Eintrag über kommunale Kläranlagen seit 1990 deutlich gesunken , vor allem in den Jahren bis 1995. Der Eintrag über landwirtschaftliche Flächen ist ebenfalls rückgängig. Die Phosphorbelastung der Berliner Gewässer beträgt für den Zeitraum 1995-1997: Zuflüsse nach Berlin 188 t/a Summe Kläranlagen 109 t/a Misch- und Trennkanalisation 38 t/a Summe Zuflüsse und Einleitungen 336 t/a Summe Abfluss 283 t/a In den Zuflüssen nach Berlin überwiegen die diffusen Einträge mit ca. 60 %. Der Grundwasserpfad ist mit ca.50 % der dominante Eintragspfad (diffuser Eintrag 100 %). Beim Gesamtphosphor wird der Mittelwert der entsprechenden Jahre zugrundegelegt. Deutlich wird die erhöhte P-Belastung der Berliner Gewässer etwa um den Faktor 2 bis 3 über den Hintergrundwerten. Eine Ausnahme bildet der Tegeler See . Der Zufluss zum Hauptbecken des Tegeler Sees wird über eine P-Eliminationsanlage geführt und somit der Nährstoffeintrag in den See um ca. 20 t/a entlastet.