SWIM Water Extent is a global surface water product at 10 m pixel spacing based on Sentinel-1/2 data. The collection contains binary layers indicating open surface water for each Sentinel-1/2 scene. Clouds and cloud shadows are removed using ukis-csmask (see: https://github.com/dlr-eoc/ukis-csmask ) and are represented as NoData. The water extent extraction is based on convolutional neural networks (CNN). For further information, please see the following publications: https://doi.org/10.1016/j.rse.2019.05.022 and https://doi.org/10.3390/rs11192330
Das Thema beinhaltet die flächenhafte Darstellung der Bundeswasserstraße Elbe im Stadtgebiet Dresden.
Darstellung des Standortes der Einleitstellen aus Regenrückhaltebecken (RRB) in Oberflächengewässer zweiter Ordnung als Punkt. Allerdings sind nicht für alle erfassten RRB die Einleitstellen bekannt, so dass dieses Thema nicht ganz vollständig ist. Es wird unterschieden in Einleitstellen von ober- und unterirdischen RRB. Zu den einzelnen Einleitstellen werden, soweit vorhanden, Sachdaten wie eindeutige Bezeichnung des dazugehörigen RRB, Lagebeschreibung des RRB, Lage der Einleitstelle im Gewässer (LU = linkes Ufer, RU = rechtes Ufer), maximaler Drosselabfluss in l/s für das Bemessungsereignis, Gewässer, in das eingeleitet wird, Jahr der Inbetriebnahme, Betreiber, Aktenzeichen der Planfeststellung und Aktenzeichen im Umweltamt zur Verfügung gestellt. Manchmal ist auch ein Foto der Einleitstelle vorhanden. Grundlage für die Sachdaten sind in der Regel Betreiberangaben.
Dieser Dienst stellt für das INSPIRE-Thema Gewässernetz (Hydro-Physische Gewässer) aus ATKIS Basis-DLM umgesetzte Daten bereit. Das Thema Gewässernetz ist in Anhang I der INSPIRE-Richtlinie ist dieses Thema wie folgt definiert: „Elemente des Gewässernetzes, einschließlich Meeresgebieten und allen sonstigen Wasserkörpern und hiermit verbundenen Teilsystemen, darunter Einzugsgebiete und Teileinzugsgebiete. Gegebenenfalls gemäß den Definitionen der Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik (2) und in Form von Netzen.“ Zusätzlich findet man im Steckbrief Hydrografie GDI-DE(www.geoportal.de) folgende ergänzende Definition zum Thema. „Die Datenspezifikation zum Thema Hydrografie legt den Schwerpunkt auf die Darstellung und Beschreibung von Stehgewässern und Fließgewässern bzw. Seen, Flüssen und anderen Gewässern. Je nach Anwendungsfall gibt es thematische und geographische Einschränkungen bzw. eine unterschiedliche Semantik: Geographisch betrachtet sind alle Binnengewässer bzw. oberirdischen Wasserkörper im Binnenland angesprochen. Topographisch gesehen umfasst der Begriff „Gewässernetz“ die Gesamtheit aller von der Quelle bis zur Mündung zueinander fließenden Gewässer.„:Eine dauerhafte, quer über einem Wasserlauf führende Barriere, die dazu dient, ein Gewässer aufzustauen oder seinen Durchfluss zu steuern.
Beschreibung des INSPIRE Download Service (predefined Atom): Dieser INSPIRE Datensatz beinhaltet das Gewässernetz des Saarlandes. Die Transformation erfolgte gemäß den INSPIRE Richtlinien Hydrographie in der Version 4.0. Folgende Anwendnungsschemen werden derzeit zu diesem Thema bereitgestellt: * Hydrographie Physical Waters * Hydrographie Networks Das Schema Hydrographie Physical Waters Das Anwendungsschema von Physical Waters dient hauptsächlich zum Erstellen von Basiskarten für die Hydrographie. Die Auswahl von Feature-Klassen in diesem Paket basiert sowohl auf den Anforderungen zum Zuordnen bestimmter Objekte als auch auf der Notwendigkeit, bestimmte Objekte nach einem Modellierungsaspekt zu unterscheiden. Infolgedessen werden bestimmte Merkmale der "realen Welt" in einer einzigen Klasse zusammengefasst, wenn festgestellt wurde, dass sie weder aus Sicht der Kartierung noch aus Sicht der Modellierung unterschieden werden müssen. Folgende Gruppen von Objekten können unterschieden werden: * Natürliche Wasserobjekte, die Teil des hydrologischen Netzwerks sind, wie Wasserläufe, stehendes Wasser, Feuchtgebiete usw. * Objekte, die die physikalischen Wasserobjekte beschreiben (Ufer, Uferlinien) * Gebiete, in denen das Wasser aufgefangen wird (Flussbecken / Entwässerungsbecken) * Hydrographische Interessenspunkte. Punkte, die den Wasserfluss im Gewässernetz beeinflussen und auf Karten erscheinen, aber keine künstlichen Objekte sind (z. B. Stürze, Quellen und Sickerungen usw.). * Künstliche Objekte. Alle Objekte, die auf der Karte angegeben werden müssen und eine Beziehung zum Wassernetz haben (z.B. Böschungen, Kanäle, Schleusen, Dämme und Wehre). Das Schema Hydrographie Networks Für die Modellierung werden zusätzliche Informationen (z. B. geschlossenes Netzwerk, bestimmte Attribute) benötigt, die nicht unbedingt für eine Hintergrundkarte benötigt werden. Diese zusätzliche Information sowie das Netzwerkmodell selbst sind daher in einem separaten Anwendungsschema enthalten, das als Erweiterung der physikalischen Gewässer angesehen werden kann. Wenn nur ein Netzwerkmodell beim Datenbereitsteller verfügbar ist, ist es möglich, das Netzwerk zu beschreiben, ohne direkt auf physische Objekte zu verweisen. Aus diesem Grund enthalten räumliche Objekte sowohl im Netzwerkmodell als auch in den physikalischen Hydrographie-Schemen ihre eigenen Geometrien. - Der/die Link(s) für das Herunterladen der Datensätze wird/werden dynamisch aus GetFeature Anfragen an einen WFS 1.1.0+ generiert
INSPIRE-konformer Datensatz für Hydro-Physische Gewässer gemäß INSPIRE-Datenspezifikation, abgeleitet aus dem ATKIS Basis-DLM-Datenbestand. Die Daten sind ausschließlich über Dienste (WMS und WFS) verfügbar.
Das Projekt "Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Ozeanischer Einfluss auf den grönländischen 79°N Gletscher" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut für Polar- und Meeresforschung, Fachbereich Klimawissenschaften, Sektion Physikalische Ozeanographie der Polarmeere.Die Wechselwirkung zwischen der Kryosphäre und dem Ozean bildet eine der Hauptursachen für lokale und globale Veränderungen des Meeresspiegels. Das Schmelzen des grönländischen Eisschildes trägt derzeit zu rund einem Drittel zum globalen Meeresspiegelanstieg bei, und der Massenverlust des Eisschildes und damit der Transport von Eis aus dem Eisschild in den Ozean beschleunigen sich weiter. Bis vor kurzem schien es, als sei die Beschleunigung der abfließenden Eisströme auf Grönlands Westküste und die Fjorde im Südosten beschränkt, während die Gletscher im Nordosten als weitgehend stabil galten. Einer dieser scheinbar stabilen Gletscher ist der Nioghalvfjerdsbrae oder 79°Nord Gletscher, der größere zweier Gletscher, die aus dem nordostgrönländischen Eisstrom gespeist werden und direkt ins Meer münden. Wegen der Existenz einer Kaverne unter der schwimmenden Eiszunge analog zu den Schelfeisen der Antarktis ist der 79°Nord Gletscher für Studien der Eis Ozean Wechselwirkung sehr interessant, besonders da das Einzugsgebiet des nordostgrönländischen Eisstroms mehr als 15% der Fläche des grönländischen Eisschildes erfasst. Aktuelle Studien weist nun auf eine Beschleunigung des Eisstromes und eine Abnahme der Eisdicke entlang der Küste von Nordostgrönland hin. Gleichzeitig wurde eine Erwärmung und eine Zunahme des Volumens des Atlantikwassers in der Ostgrönlandsee und der Framstraße beobachtet. Unser Projekt hat zum Ziel, (1) die Mechanismen zu verstehen, mit denen der Ozean Wärme aus der Framstraße und vom Kontinentalhang Nordostgrönlands in die Kaverne unter dem schwimmenden 79°N Gletscher transportiert, (2) die Rolle externer Variabilität relativ zu Prozessen innerhalb der Kaverne hinsichtlich ihres Einflusses auf das Schmelzen an der Eisunterseite zu untersuchen und (3) die wichtigsten Sensitivitäten innerhalb dieses gekoppelten Systems aus Eis und Ozean zu identifizieren. Wir verfolgen dieses Ziel durch eine Kombination von gezielter Beobachtung und innovativer hochauflösender Modellierung. Im Rahmen zweier Forschungsreisen mit dem Eisbrecher FS Polarstern werden Strömungsgeschwindigkeiten, Hydrographie und Mikrostruktur sowohl mit gefierten als auch mit verankerten Instrumenten gemessen. Diese Beobachtungen werden durch den Einsatz eines autonomen Unterwasserfahrzeugs ergänzt. Zur Modellierung nutzen wir das Finite Element Sea ice Ocean Model (FESOM), das um eine Schelfeiskomponente erweitert wurde und in einer Konfiguration betrieben wird, die mit hoher Auflösung die kleinskaligen Prozesse auf dem Kontinentalschelf vor Nordostgrönland und in der Kaverne unter dem 79°N Gletscher in einem globalen Kontext wiedergibt. Zusammen mit den Beiträgen unserer Kooperationspartner aus der Glaziologie und der Tracerozeanographie entwickelt sich aus der Synthese dieser beiden Komponenten ein detailliertes Bild der Prozesse auf dem Kontinentalschelf Nordostgrönlands, einer Schlüsselregion für zukünftige Veränderungen des globalen Meeresspiegels.
Gebietsbeschreibung Das LSG erstreckt sich von der Schrote bei Wellen im Südwesten bis zur Florenne im Nordosten. Es besteht aus zwei etwa gleich großen Teilflächen, die durch die Bundesautobahn A 2 voneinander getrennt sind. Das Gebiet liegt in der Landschaftseinheit Magdeburger Börde. Der landschaftliche Charakter des Gebietes wird durch die während der Eiszeit entstandenen Hügel und Geländekanten sowie die dazwischen liegenden kleinen Niederungen der hier entspringenden Fließgewässer bestimmt, die den Übergang von der Hohen Börde zur Niederen Börde markieren. Im Norden prägt der Teufelsberg (121,3 m ü. NN) als schmale, weit nach Osten vorspringende Anhöhe die Landschaft. Nach Süden schließt sich die breite Gersdorfer Bucht an, die vom Telzgraben durchflossen wird und fast bis an die westliche Grenze des LSG heranreicht. Der Höhenunterschied zwischen Teufelsberg und Telzgraben beträgt 45 m. Noch ausgeprägter ist der Höhenunterschied westlich von Gersdorf, wo die Hänge 50–60 m steil zur Hochfläche aufsteigen. Weiterhin geprägt wird die Landschaft durch den sich zwischen Dahlenwarsleben und Hohenwarsleben erhebenden Felsenberg (107,4 m ü. NN). Durch seinen Höhenunterschied von 35 m zur umgebenden Ackerebene und durch seine Bewaldung fällt der Berg besonders auf. Die Aufforstung der Kuppe soll um 1835 erfolgt sein. Der Baumbestand hat einen parkähnlichen Charakter und ist von vielen Wegen durchzogen. Als weitere markante Erhebung fällt am Westrand des LSG der Dehmberg (104,5 m ü. NN) auf, dessen Kuppe vier Hochbehälter zur Aufnahme des Trinkwassers aus der Colbitz-Letzlinger Heide trägt. Den östlichen Rand des LSG prägen der Teufelsküchenberg (136 m ü. NN) und der Große Wartberg, der mit 145,7 m ü. NN die höchste Erhebung des Gebietes darstellt. Der Aussichtspunkt auf der Bismarckwarte sowie die parkartigen Gehölzbestände machen ihn zu einem beliebten Ausflugsziel. Am Autobahnrasthof Börde befindet sich ein weiterer Laubmischwald, hier wurde auch Buche eingebracht. Teilweise noch vorhandene Obstbaumalleen, nach dem 2.Weltkrieg angelegte Pappelreihen sowie die in den 1980er Jahren angelegten Flurholzstreifen prägen weiterhin den Charakter der Landschaft. Die Orte sind im Kern meist historisch erhaltene Dörfer, in denen die herrschaftlichen Häuser der „Rübenbarone“ des 19. Jh. markant hervortreten. Einige Ortsränder sind noch so erhalten, wie sie in den vergangenen Jahrhunderten entstanden sind. Nutzgärten, Streuobstwiesen, kleine Äcker und Wiesen schaffen einen harmonischen Übergang zu den intensiv genutzten, hochproduktiven Ackerflächen, die den weitaus größten Teil des LSG einnehmen. Landschafts- und Nutzungsgeschichte Die Hohe Börde zeichnet sich im Bereich des LSG durch eine dichte Besiedlung während der Vor- und Frühgeschichte sowie im Mittelalter aus. Schwerpunkt bildet dabei die Gegend um Hohenwarsleben, wo sich bei fünf Fundstellen Kontinuität von der Jungsteinzeit bis in die römische Kaiserzeit und teilweise bis ins Mittelalter abzeichnet. 38 Fundstellen entfallen innerhalb der Grenzen des LSG allein auf diese Gemarkung, die insgesamt 48 Fundstellen umfasst. Weitere 28 Fundstellen kommen aus den benachbarten Gemarkungen hinzu. Dabei riss die Besiedlung im LSG zu keiner Zeit ab. Lediglich Schwankungen in der Siedlungsdichte und in der Siedlungsplatzwahl zeichnen sich ab. Diese Siedlungsgunst verdanken Hohenwarsleben und die benachbarten Gemarkungen den fruchtbaren Schwarzerdeböden und den Quellen und Bächen, die die Wasserversorgung garantierten. Die erste dauerhafte Besiedlung fand während der frühen Jungsteinzeit durch die Linienbandkeramikkultur statt, die in der Gemarkung Hohenwarsleben allein durch acht Fundstellenrepräsentiert ist. Eine weitere Fundstelle stammt aus der Gegend um Irxleben, dann setzt im Süden die Besiedlung zunächst aus, während sie im Norden bis Wolmirstedt dichtbleibt. Dort am Rande der Lössverbreitung endet dann auch die wirtschaftliche Basis dieser frühen Ackerbauern. In der auf die Linienbandkeramik folgenden Stichbandkeramik dünnt die Besiedlung im LSG auf zwei Fundstellen bei Hohenwarsleben aus, die den südlichen Rand einer Siedlungskammer markieren, deren Schwerpunkt zwischen Klein Ammensleben, Gutensleben, Wolmirstedt und Barlebenliegt. Dies ändert sich auch während der Rössener Kultur nicht, die im LSG nur durch einen Siedlungsplatz bei Hohenwarsleben vertreten ist. In der mittleren Jungsteinzeit ändert sich das Siedlungsbild. Zunächst folgt eine lockerere Besiedlung der Börde durch die Baalberger Kultur, welche durch die von Norden einwandernde Tiefstichkeramik-Kultur nach Süden abgedrängt wird. Diese Kultur ist bei Hohenwarsleben von vier Fundstellen bezeugt, während die Baalberger Kultur dort lediglich durch einen einzelnen Fund repräsentiert ist, zu dem weiter südlich zwei Grabfunde bei Schnarsleben und Niederndodeleben hinzutreten. Die Bernburger Kultur ist im LSG nur mit einer Siedlung am Felsenberg bei Dahlenwarsleben nachgewiesen. Deren Siedlungsschwerpunkt lag weiter im Süden, während sich in der Region die Kugelamphorenkultur verbreitet hat, von der im LSG Funde bei Hohenwarsleben vorliegen. Zu einer Verdichtung der Besiedlung kam es während der späten Jungsteinzeit durch die Schönfelder Kultur, von der sich im LSG allein innerhalb der Gemarkung Hohenwarsleben acht Siedlungen befanden, die in Nord-Süd-Richtung am zertalten Rand der Hohen Börde lagen. Ein bei Hohenwarsleben entdecktes Grab der Glockenbecherkultur enthielt neben einer Tasse einen Becher der Einzelgrabkultur. Gräber der frühbronzezeitlichen Aunjetitzer Kultur kommen im Umkreis sowie innerhalb des LSG häufiger vor; hierzu zählen ein Gräberfeld südwestlich Hohenwarsleben, das knapp außerhalb des LSG liegt, sowie im LSG Einzelgräber südlich von Hohenwarsleben und am Felsenberg. Während der Spätbronzezeit siedelte im LSG die Saalemündungsgruppe, aus der die früheisenzeitliche Hausurnenkultur hervorging, von denen sich Siedlungen und Gräberfelder bei Hohenwarsleben fanden. Diese Entwicklung belegt einmal die kontinuierliche Nutzung eines Gräberfeldes bei Hohenwarsleben und wird darüber hinaus von dem schrittweisen Formenwandel in der Grabkeramik des Gräberfeldes nachgezeichnet. Das Gräberfeld wurde bis in die jüngere Eisenzeit hinein als Bestattungsplatz genutzt. Das politische und wirtschaftliche Zentrum bildete während der Spätbronzezeit eine mit einer Holz-Erde-Mauer gesicherte Befestigung bei Hohenwarsleben. Die römische Kaiserzeit ist im LSG auf mehreren Fundstellen anhand meist nur einzelner Scherben bezeugt. Während des Mittelalters existierten nebenden heute noch bestehenden Orten acht weitere Dörfer, die im Laufe des 14. und 15. Jh. verlassen wurden und wüst fielen. Eine kleine Burg befand sich unmittelbar östlich von Wellen. 1151 wird dort ein ERICUS DE WELLE urkundlich genannt. Zu den großen Orten der Hohen Börde gehörte schon früh Niederndodeleben. Das große Haufendorf wurde an der Stelle begründet, wo die Schrote aus der Hohen Börde in die Niedere Börde eintritt. Das Dorf gehört zu den Ortschaften, mit denen OTTO I. im Jahr 937 das neu gegründete Moritzkloster in Magdeburg ausstattete. Vor 1363 waren bereits 33 Hofwirte ansässig. 1121 erfolgte die erste Erwähnung des Dorfes Gersdorf als Geroldestorp. Das Dorfbild bestimmen noch heute die für die Börde typischen Vierseithöfe, die durch ihre Form und die Verwendung von Bruchsteinen fest und abgeschlossen wirken. Bedeutung für die wirtschaftliche Entwicklung der Orte am Rand der Hohen Börde hatteer Rupelton, der in verschiedenen Tongruben abgebaut und verarbeitet wurde; so in der 1835 gegründeten Ziegelei bei Hohenwarsleben, die erst 1966 ihren Betrieb einstellte, und der Rosenplenterischen Ziegelei westlich Olvenstedt. Großen Einfluss auf die Entwicklung der Wirtschaft in der Börde hatte vor allem die Entdeckung der Runkelrübe als Rohstoffpflanze für die Zuckergewinnung (s. LSG-Buch S. 151). Geologische Entstehung, Boden, Hydrographie, Klima Der tiefere Untergrund des LSG baut sich aus Grauwacken und Tonschiefern des Karbonsauf, die im Niveau von ca. 50 m ü. NN von marinem Unteroligozän (Rupel-Folge) diskordant überlagert werden. Die Rupel-Folge besteht hauptsächlich aus kalkigem Ton (Rupelton), der auch verbreitet an der Oberfläche ansteht und in Ziegeleigruben abgebaut wurde. Der Ausstrich des Rupels und das hügelige Relief sind ein Ergebnis von Lagerungsstörungen, die durch Stauchungsprozesse am Rande des pleistozänen Inlandeises entstanden sind. Das LSG „Hohe Börde“ gehört zu einer Stauchendmoräne, die den jüngsten Inlandeis-Vorstoß des Drenthe-Stadiums der Saale-Kaltzeit nach Mitteldeutschland markiert. Die Randlage dieses Eisvorstoßes ist nach SSE als unterbrochene Hügelkette bis in den Raum Halle verfolgbar (Petersberger Endmoräne) und steht wahrscheinlich auch mit den Endmoränen nördlich von Leipzig in Verbindung. Die pleistozäne Sedimentfolge beginnt mit Grundmoräne (Geschiebemergel) und kiesigem Schmelzwassersand aus der Saale-Kaltzeit. Die Grundmoräne ist zwischen den Rupel-Ausstrichen und in deren westlichem und nördlichem Vorland erhalten, Schmelzwasserablagerungen kommen vor allem um Gersdorf vor. Den hangenden Profilabschluss bilden auf den Hochflächen weichselkaltzeitlicher Löss in differenzierten Mächtigkeiten und die holozäne Schwarzerde. Der Löss geht an den Hängen in Hanglöss über, in den Tälern lagern holozäne Abschwemmmassen. Das LSG liegt im Bereich der schwarzerdebetonten Magdeburger Lössbörde. Es erfasst den Rand des Wanzlebener Löss-Plateaus zur Olvenstedter Löss-Ebene mit dem Aufschluss des Rupeltons. Auf dem Wanzlebener Löss-Plateau sind Braunerde-Tschernoseme und Tschernoseme aus Löss vorherrschend. Die Böden sind stellenweise unterhalb 1,2 m durch Geschiebemergel, seltener durch Schmelzwassersand, unterlagert. Auf dem Plateaurand sind Pararendzinen mit Pararendzina-Pelosolen, Tschernosemen und Pseudogley-Tschernosemen vergesellschaftet. Die Pararendzinen sind in Löss, Sandlöss über Geschiebemergel und seltener in Sandlöss über Schmelzwassersand entwickelt. Pararendzina-Pelosole variieren zu Pararendzinen in Abhängigkeit von der Mächtigkeit und Ausbildung der Deckschicht. Im Normfall ist dieser Boden in Decklehm über flachem Tonmergel (Rupelton) und insteileren wasserzügigen Hanglagen entwickelt. Auf flacheren Hängen und in Muldenlage sind diese Substratprofile durch Staunässe überprägt. Hier sind Pseudogley-Tschernoseme entwickelt, die auch die Quellmulden der Bäche kennzeichnen. Auf dem unteren flachen Hangabschnitt, dem Hangfuss, haben sich tiefhumose schwarzerdeartige Kolluvialböden entwickelt, die zu den Bachtälern in Gley-Kolluvisole aus lehmig-schluffigen, seltener sandig-schluffigen Substraten übergehen. In der sich anschließenden tiefergelegenen Olvenstedter Löss-Ebene dominieren wiederum Schwarzerden, die hier auf Grund des Lokalklimas mit sehr geringen Niederschlägen und hoher Verdunstung mit Kalkschwarzerden vergesellschaftet sind. Die meisten Bäche der Börde sind recht unscheinbare Wasserläufe, die in einem deutlichen Gegensatz zu ihrem im Pleistozän breitausgeformten Tälern stehen. Besonders deutlich ist dies bei der Schrote zu erkennen, welche bis Diesdorf eine breite Periglazialtalung nutzt, die südlich der Ortschaft Wellen eine Breite von 50–200 m aufweist. Die Schrote ist normalerweise ein kleiner Wasserlauf, sie kann aber nach Gewittergüssen zu einem reißenden Bach werden. Diffusionsbelastungen sowie Abwassereinleitungen der anliegenden Gemeinden bedingen derzeit nur eine Einstufung als kritisch belastetes Gewässer. Die Große Sülze entspringt im LSG am Teufelsküchenberg. Sie ist überwiegend naturfern ausgebaut und ist hochgradig abwasserbelastet. Als begradigte und stark verschmutzte Gewässer gelten auch die Kleine Sülze und der Telzgraben. Das LSG ist arm an Stillgewässern, zu erwähnen sind nur die ehemaligen Tongruben bei Hohenwarsleben und westlich Olvenstedt sowie die Fischteiche in Hohenwarsleben, die aus Quellen gespeist werden. Das Grundwasser gilt im östlichen und südlichen Bereich des LSG als relativ ungeschützt gegenüber flächenhaft eindringenden Schadstoffen. Das LSG liegt im Klimagebiet des stark kontinental beeinflussten Binnentieflandes. Im jährlichen Durchschnitt fallen 500–560 mm Niederschlag. Das Jahresmittel der Lufttemperatur liegt um 9°C. Die mittleren Lufttemperaturen betragen im Januar 0 °C bis 1 °C und im Julica. 18 °C. Pflanzen- und Tierwelt Als Potentiell Natürliche Vegetation ist auf den ebenen Flächen der Hohen Börde der Labkraut-Traubeneichen-Hainbuchenwald anzusehen, auf den Kuppen der Wucherblumen-Traubeneichen-Hainbuchenwald. In den größeren Talungen wird ein Waldziest-Stieleichen-Hainbuchenwald als natürlich angesehen. Heute sind diese natürlichen Waldgesellschaften im LSG nicht einmal mehr in Resten erhalten, nur am Felsenberg sind zumindest Arten der natürlichen Zusammensetzung, wie Winter-Linde und Stiel-Eiche, zufinden. Reste einer Weichholzaue bestehen noch an Abschnitten des Telzgrabens, der Schrote und an Grams Ziegelei westlich Olvenstedt. Am Großen Wartberg und am Goldberg sind Robinien- bzw. Kiefernforste zu finden. Trockengebüsche mit Hunds-Rose, Weißdorn und Schlehe treten u.a. an Teufelsberg, Teufelsküchenberg und Dehmberg auf. Meist handelt es sich hier um verbuschte Halbtrockenrasenstandorte. Für das Gebiet charakteristische subkontinentale Halbtrocken- und Trockenrasen sind heute durch Aufforstungen (Kiefer, Robinie, Sanddorn), Abgrabungen oder Verbuschung weitgehend verschwunden. Reste sind noch am Südhang des Teufelsberges, am Dehmberg, am Teufelsküchenberg, am Großen Wartberg und am südgenäherten Hang des Katzentales südlich Irxleben erhalten. Zu den hier vorkommenden Pflanzenarten zählen z.B. Hügel-Meier, Steppen-Sesel, Braunes Mönchskraut, Walliser Schwingel, Steppen-Salbei, Pfriemengras, Roßschweif-Federgras und Gemeine Küchenschelle. Die Waldreste und Feldgehölze des LSG sind Brutplätze für Rot- und Schwarzmilan sowie Mäusebussard, auch Schwarz-, Bunt- und Grünspecht kommen hier vor. Auf den verbuschten trockenen Kuppen sowie an gehölzbestandenen Feldwegen sind Neuntöter und vereinzelt auch die Sperbergrasmücke und das Braunkehlchen anzutreffen. Die wassergefüllten ehemaligen Tonabgrabungen bei Hohenwarsleben werden u.a. von Zwergtaucher, Teich- und Bläßralle und Teichrohrsänger sowie die Röhrichte von der Rohrweihe besiedelt. Seltener Brutvogel vegetationsarmer Freiflächen in den Orten, besonders an landwirtschaftlichen Anlagen, ist die Haubenlerche. Rebhuhn und Wachtel sind Brutvögel der Ackerlandschaft, sofern eine ausreichende Strukturierung durch Wegraine, Gebüsche und trockene Ruderalfluren noch gegeben ist. In den Herbst- und Wintermonaten kann es zu großen Ansammlungen nordischer Gänse in der Börde kommen und regelmäßig sind zu dieser Zeit auch Rauhfußbussarde im Gebiet anzutreffen. Wie der Feldhase wurde auch der Hamster als Steppentier durch die Ausdehnung der Ackerflächen gefördert. Während der Hasenbestand in der Börde von 1960 bis 1990 auf etwa ein Viertel des damaligen Bestandes gesunken ist, ist der Hamster fast völlig verschwunden. Dies ist um so bemerkenswerter, da früher in „Hamsterjahren“ Dichten von bis zu 80 Tieren/ha keine Seltenheit waren. Rehwild ist heute auf den Ackerflächen des LSG regelmäßig anzutreffen. Entwicklungsziele Die Hohe Börde soll ihren Charakter als Ackerlandschaft behalten. Um die Bedeutung hinsichtlich des Arten- und Biotopschutzes zu erhöhen und das Landschaftsbild zu verbessern, sind die Ackerflächen verstärkt durch Windschutzgehölze, Hecken, Obstbaumreihen, Gewässerrandstreifen und breitere Wegraine aufzuwerten. Die wertvollen Schwarzerdeböden sind durch zweckmäßige Schlaggestaltung und bodenpflegliche Bewirtschaftung in ihrer Fruchtbarkeit nachhaltig zu sichern. Derzeit ackerbaulich genutzte Magerstandorte, besonders in Hanglagen, sollen in extensiv zu nutzendes mageres Grünland überführt werden. Aufgeforstete Halbtrockenrasen einschließlich stark verbuschter Bereiche sind freizustellen. Noch vorhandene und wiederherzustellende Magerrasen sollen durch Schafbeweidung erhalten werden. Streuobstwiesen sind zu pflegen und unter Verwendung von für die Region typischen Obstsorten auszuweiten. Noch vorhandene alte Bauerngärten sollen gesichert und gepflegt werden. Standortuntypische Aufforstungen sind langfristig in Wälder zu überführen, die der Potentiell Natürlichen Vegetation entsprechen. (1) Exkursionsvorschläge Dehmberg und Felsenberg Die beiden östlich von Hohenwarsleben gelegenen Ausflugsziele liegen am Rande der Hohen Börde hin zur Niederen Börde. Somit lassen sich, besonders vom Dehmberg aus (104,5 m über NN), diese beiden Landschaftsformen gut überblicken: die Hohe Börde zwischen dem Felsenberg und den Hängelsbergen am Stadtrand von Magdeburg und die östlich anschließende Niedere Börde, die sich bis in das Stadtgebiet von Magdeburg hinein erstreckt. Der Felsenberg (107,4 m über NN) fällt durch seine bewaldeten Hänge in der Ackerlandschaft besonders auf. Bei beiden Erhebungen handelt es sich um Rupeltonablagerungen, die von pleistozänem Material überzogen wurden. Dieses schwarzgraue bis blaugraue, kalkreiche Material steht am Rande der Hohen Börde vor allem zwischen Hohenwarsleben und Klein Ammensleben relativ oberflächennah an und weist Mächtigkeiten bis zu 60 m auf. Der Abbau von Ton und dessen Verarbeitung brachten der Region wirtschaftlichen Aufschwung. Neben vielen anderen Tongruben und Ziegeleien wurde in Hohenwarsleben 1835 eine Ziegelei errichtet, die bis 1966 in Betrieb war. Orte in der Umgebung des LSG Gersdorf, dessen ursprüngliche Form als Gassendorf noch erkennen ist, erhielt im Mittelalter eine Wehrkirche. Die Bartholomäus-Kirche ist aus Feldsteinen errichtet und besitzt einen abgeschlossenen Westturm. Unter Benutzung mittelalterlicher Baureste wurde im 17. Jahrhundert der einschiffige Gemeinderaum erneuert. Auch Hohenwarsleben bewahrt einige bau- und kunstgeschichtlich erwähnenswerte Bauwerke. Von der schon 1199 genannten Kirche des St. Benedikt blieb allerdings nur der wehrhafte Westturm in seiner ursprünglichen Form erhalten. Der Dorfchronik zufolge soll das zweistöckige Pfarrhaus von 1654 stammen. Aus dem 12. Jahrhundert stammt die dem Heiligen Laurentius geweihte Kirche in Schnarsleben. Große Teile der im 17. Jahrhundert zerstörten Kirche wurden 1693 auf altem Bestand barock erneuert. Die ehemalige Wehrkirche St. Petri und Paul in Niederndodeleben ziert der stattlichste Westquerturm aller Kirchen im weiten Umfeld. (1) Verschiedenes Die Geschichte des Rübenanbaus Die Entdeckung der Runkelrübe als Rohstoffpflanze für die Zuckergewinnung begann durch Versuche des Berliner Apothekers und Chemikers Sigismund Andreas Marggraf zur Zuckergewinnung aus einheimischen Pflanzen, deren Ergebnisse er 1747 in einer Sitzung der Akademie der Wissenschaften vorstellte. Die kristalline Struktur der Runkelrübe gleiche unter dem Mikroskop der des Rohrzuckers und sie schmecke sehr süß. Erst 30 Jahre später fanden die Ergebnisse durch den Schüler Marggrafs, Franz Carl Achard, in praktischen Versuchen Anwendung, die auch den König Friedrich Willhelm III. von der neuen Form der Zuckergewinnung überzeugten. Der Anordnung Friedrich Willhelm III. im Jahr 1799, in allen Zuckersiedereien Preußens Großversuche mit den Anbau der Runkelrübe zu beginnen, folgte noch am Ende des gleichen Jahres die Freigabe der Sirup- und Rohrzuckerbereitung als selbständiges Gewerbe. Die im Jahre 1806 von Napoleon verhängte Kontinentalsperre verstärkte das Interesse an der Rübenzuckergewinnung, da Europa von Rohrzuckerlieferungen aus Übersee abgeschnitten war. Im Zeitraum bis 1812, als Napoleon verstarb, entstanden besonders in der Magdeburger Börde viele Fabriken, die jedoch aufgrund des zu geringen Zuckergehaltes in den Rüben und des nun wieder in großen Mengen importierten Rohrzuckers ihren Betrieb einstellen mußten. Der Konkurrenzdruck des Rohrzuckers wurde in den 1830er Jahren durch hohe Schutzzölle, vor allem von Frankreich und Österreich, weitestgehend ausgeschaltet. Standortvorteile der Börde, wie fruchtbarer Schwarzerdeboden, mildes Klima sowie günstige Verkehrsanbindungen und das Vorkommen von sekundär an die Rübenzuckerproduktion gebundenen Rohstoffen (Braunkohle, Salz, Kalk, Gips), begünstigten den Rübenanbau und die damit eng verknüpfte Industrialisierung in der Börde. Durch die preußische Agrarreformgesetzgebung und den Anbau von Zichorien seit dem 18. Jahrhundert waren ausreichend große kultivierte Ackerflächen vorhanden. Mit der Gründung der "Aktiengesellschaft zum Bau und Betrieb einer Zuckerrübenfabrik in Klein Wanzleben" durch Groß-, Mittel- und Kleinbauern im Jahr 1838 verpflichtete der Besitz dieser Aktien zum Rübenanbau. Viele Bauern konnten von der Verpachtung ihrer Flächen für den Rübenanbau leben. Um 1857 gab es 52 Rübenzuckerfabriken in der Niederen Börde. Dazu zählen auch die im LSG liegenden Standorte Dahlenwarsleben und Niederndodeleben. Im Vergleich dazu verarbeiten heute die Zuckerfabriken Könnern (Landkreis Bernburg) und Klein Wanzleben (Bördekreis) mindestens die gleiche Menge, sie sind die einzigen in der Region Magdeburg-Halle. Zunehmend wurden Groß- und Mittelbauern Besitzer der landwirtschaftlichen Flächen, kleinere Bauern dagegen arbeiteten in den landwirtschaftlichen Großbetrieben oder wanderten in die Städte ab. Die sogenannten "Rübenbarone" ließen in den Dörfern ihre Wohnhäuser in moderner Massivbauweise mit Torbögen und aufwendiger Fassadengestaltung errichten, die sich deutlich von den in der Region üblichen Fachwerkhäusern abhoben. Noch heute sind diese ehemaligen "Rübenpaläste" aus der Zeit zwischen 1806 und 1914 beispielsweise in Niederndodeleben und Dahlenwarsleben zu finden. Mit zunehmender Industrialisierung in der Landwirtschaft wurde Mitte des 19. Jahrhunderts der Spaten zur Bewirtschaftung der Ackerflächen durch neue Geräte abgelöst. Im Jahr 1852 kam zum ersten Mal der "Wanzleber Pflug" der Halberstädter Firma Dehne zum Einsatz, eine Drillkulturmaschine ersetzte das Aussäen per Hand, und für die Ernte entwickelten der Bernburger Fabrikant Wilhelm Siedersleben einen Rübenheber sowie Rudolf Sack einen Rübenrodepflug. Der Dampfpflug wurde von den an Ackerrändern stehenden Dampfmaschinen angetrieben, mit denen der Pflug auf der Fläche durch Seilzüge verbunden war. Die metallverarbeitende Industrie expandierte durch solche Erfindungen und die Landmaschinenindustrie Magdeburg-Halle war auch international erfolgreich. Um die Jahrhundertwende hatte Sachsen-Anhalt den höchsten Mechanisierungsgrad der Landwirtschaft im Deutschen Reich. Doch die Arbeitskraft der heimischen Kleinbauern, die oft nur noch als Landarbeiter während der Sommermonate tätig waren, wurde durch Maschinen ersetzt, und ihre Löhne sanken aufgrund des Anwerbens billiger Saisonarbeiter aus anderen Gebieten. Um den Transport der geernteten Rüben zu den Zuckerfabriken zu gewährleisten, wurde auf den Straßen eine tragfähigere Spurbahn mit Pflastersteinen aus Schlacken (Nebenprodukt bei der Metallverhüttung) verlegt. Auf den Landstraßen in der Börde sind diese dunkelgrauen Spurbahnen, sofern sie noch nicht mit einer Asphaltdecke überzogen wurden, heute noch zu sehen. veröffentlicht in: Die Natur- und Landschaftsschutzgebiete Sachsen-Anhalts - Ergänzungsband; © 2003; Landesamt für Umweltschutz Sachsen-Anhalt; ISBN 3-00-012241-9 (1) Die Landschaftsschutzgebiete Sachsen-Anhalts; © 2000; Landesamt für Umweltschutz Sachsen-Anhalt; ISSN 3-00-006057-X; LSG "Felsenberg" S: 151 ff. Letzte Aktualisierung: 31.07.2019
Dieser Dienst stellt für das INSPIRE-Thema Gewässernetz (Hydro-Physische Gewässer) aus ALKIS umgesetzte Daten bereit.
Dargestellt ist die punktuelle Lage der Quellen im Stadtgebiet von Dresden. Entsprechend § 2 (4) SächsWG sind Quellen "der natürliche, an einer bestimmten, örtlich begrenzten Stelle nicht nur vorübergehend erfolgende Austritt von Grundwasser." Die Quellen wurden in den Jahren 2007/2008 im Auftrag des Umweltamtes durch das Büro nature concept kartiert. Ergänzungen erfolgten in den Jahren 2010, 2015, 2021 und 2023. Zu den einzelnen Quellen sind folgende Sachinformationen angeboten: eindeutige Nummer (STANDNR); laufende Nr. (NR); Bezeichnung (NAME); Lagebeschreibung (LAGE); Quelltyp, z.B. Sickerquelle, Linearquelle (TYP_QUELLE und TYP_QUELLE_ERL); Subtyp, z.B. feinmaterialreich (SUBTYP_QUELLE und SUBTYP_QUELLE_ERL); Aussage zur Wasserführung, z.B. permanent (WASSERFUEHRUNG und WASSERFUEHRUNG_ERL); Aussage zur Naturnähe (ZUSTAND und ZUSTAND_ERL); Einschätzung, ob es sich um ein Biotop nach § 30 BNatSchG handelt (BIOTOP und BIOTOP_ERL); Erfassungsdatum (Datum); Hoch- und Rechtswert (HOCH, RECHTS); eine Beschreibung (BESCHREIBUNG); Angaben zur Gefährdung (GEFAEHRDUNG); eventuelle Bemerkungen (BEMERKUNGEN); pH-Wert, Leitfähigkeit und Wassertemperatur zum Zeitpunkt der Erfassung. Zudem gibt es zu jeder Quelle zwei Fotos. Das Thema ist Daten- und Kartengrundlage zu Lage und Namen der Quellen im Sinne des Sächsischen Wassergesetzes. Bei Bebauungsvorhaben und sonstigen Nutzungen im Bereich der Quellen sind die rechtlichen Bestimmungen zu beachten und die Untere Wasserbehörde einzubeziehen. Dieser Datensatz kann gemäß den Nutzungsbestimmungen Datenlizenz Deutschland - Namensnennung - Version 2.0 (http://www.govdata.de/dl-de/by-2-0) genutzt werden. Eine Haftung für die Richtigkeit der Daten wird nicht übernommen, insbesondere übernimmt die Landeshauptstadt Dresden keine Haftung für mittels dieser Daten erhobene oder berechnete Ergebnisse Dritter.
Origin | Count |
---|---|
Bund | 1998 |
Europa | 27 |
Kommune | 32 |
Land | 1724 |
Unklar | 26 |
Wirtschaft | 1 |
Wissenschaft | 16 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Ereignis | 3 |
Förderprogramm | 258 |
Gesetzestext | 1 |
Text | 34 |
Umweltprüfung | 14 |
unbekannt | 1778 |
License | Count |
---|---|
geschlossen | 83 |
offen | 1940 |
unbekannt | 65 |
Language | Count |
---|---|
Deutsch | 2002 |
Englisch | 75 |
andere | 44 |
Resource type | Count |
---|---|
Archiv | 524 |
Bild | 3 |
Datei | 1535 |
Dokument | 66 |
Keine | 267 |
Unbekannt | 2 |
Webdienst | 122 |
Webseite | 1085 |
Topic | Count |
---|---|
Boden | 2086 |
Lebewesen & Lebensräume | 679 |
Luft | 1333 |
Mensch & Umwelt | 2088 |
Wasser | 1975 |
Weitere | 2077 |