Das Projekt "Entwicklung von Schlauchverschluessen zur Regelung und Stauhaltung in Abwaesserkanaelen" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Floecksmühle Energietechnik GmbH.
Das Projekt "Konsolidierung der ethohydraulischen Grundlagen sowie Entwicklung eines Planungs- und Optimierungswerkzeuges für den Fischabstieg" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Wasserbau und Technische Hydromechanik.
Das Projekt "Hydraulischer Modellversuch Odertalsperre" wird/wurde gefördert durch: Harzwasserwerke GmbH. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Wasserbau und Technische Hydromechanik.Am Südwestrand des Harzes wurde zwischen 1930 und 1933 bei Bad Lauterberg (Niedersachsen) die Odertalsperre errichtet, die dem Hochwasserschutz, der Energieerzeugung und der Niedrigwasseraufhöhung des Unterlaufes der Oder in Trockenzeiten dient. Die Gesamtanlage besteht neben der 56 m hohen Hauptsperre (Erddamm mit Betonkern) aus einem unterhalb gelegenen Ausgleichsbecken (ca. 200 m x 700 m), das wiederum durch einen 7,5 m hohen Erddamm mit integrierter Wehranlage begrenzt wird. Das Reservoir der Hauptsperre und das Ausgleichsbecken wurden bis Anfang der 1990er Jahre als Pumpspeicherkraftwerk betrieben. Zur sicheren Ableitung extremer Hochwasser existiert am linken Hang der Hauptsperre eine Hochwasserentlastungsanlage (HWE) aus Beton, die nach fast 80 Jahren Schäden aufweist, die einer Sanierung bedürfen. Aus Sicherheitserwägungen soll außerdem die Wehranlage des Ausgleichsbeckens umgebaut werden. Für den Betreiber, die Harzwasserwerke GmbH aus Hildesheim, wurden deshalb von Dezember 2008 bis September 2009 zur Vorbereitung der geplanten Sanierungen hydraulische Modellversuche zur HWE, zur Wehranlage am Abschlussdamm des Ausgleichsbeckens und zum Ausgleichsbecken selbst durchgeführt. Unter Leitung von Prof. Jürgen Stamm erfolgten im Hubert-Engels-Labor des Instituts für Wasserbau und Technische Hydromechanik (IWD) der TU Dresden durch Dipl.-Ing. Holger Haufe und Dipl.-Ing. Thomas Kopp die Untersuchungen an drei Teilmodellen, zwei davon physikalisch im Maßstab M 1:25 für die HWE und M 1:20 für die Wehranlage. Bei dem dritten Teilmodell handelte es sich um ein tiefengemitteltes 2D-hydronumerisches Modell zur Ermittlung der Strömungsverhältnisse im Ausgleichsbecken. Am Teilmodell der HWE wurde im Rahmen mehrerer Versuchsreihen die hydraulische Leistungsfähigkeit und Funktionstüchtigkeit für verschiedene Zustände (vor, während und nach der Sanierung) überprüft und nachgewiesen. Durch Maßstabseffekte bedingte hydraulische Unterschiede zwischen Natur und Modell (Wasser-Luft-Gemischabfluss), die im 'verkleinerten' Modell nicht auftraten, wurden analytische Berechnungen durchgeführt, mit denen nachgewiesen werden konnte, dass die Seitenwände der HWE auch beim vermutlich größten Hochwasser (PMF) nicht überströmt werden. Die Harzwasserwerke GmbH wird voraussichtlich 2010/11 auf Grundlage der Versuchsergebnisse mit den Sanierungsarbeiten beginnen. Die am IWD untersuchten und hydraulisch optimierten Einzelmaßnahmen werden dann zu einer effizienten Bauausführung beitragen und anschließend die Hochwassersicherheit der Odertalsperre für die nächsten Generationen gewährleisten. (Text gekürzt)
Das Projekt "3-D-numerische Simulation der geplanten epilimnischen Wasserentnahme an der Talsperre Bautzen" wird/wurde gefördert durch: Landestalsperrenverwaltung des Freistaates Sachsen. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Wasserbau und Technische Hydromechanik.In den letzten Jahren kam es in den Sommermonaten zu einer erhöhten Entwicklung von Blaualgen im Stausee der Talsperre Bautzen. Zur Verbesserung der Wasserqualität der Talsperre Bautzen ist eine gezielte Wasserentnahme aus unterschiedlichen Entnahmehorizonten geplant. Für die gezielte Entnahme aus dem jeweiligen Horizont ist ein Leitschacht auf der Einlaufkammer vorgesehen. Alle seitlichen Öffnungen werden mit Stahlplatten abgedeckt, außer dem unteren vorderen Feld, es wird durch eine steuerbare Verschlussklappe verschlossen. Die Öffnung lässt sich somit wahlweise öffnen oder schließen und ermöglicht so die wechselnde Entnahme aus Hypolimnion und Epilimnion. Ziel der Untersuchungen ist der Nachweis der Funktionsweise der Wasserentnahmen bei geöffneter Klappe.
Das Projekt "Laborexperimente zum Wärme- und Gasaustausch an der Wasser-/Luftgrenzfläche angetrieben durch Oberflächenkühlung: innovative simultane Wärmebild- und optische Sauerstoffkonzentrationsmessungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Hydromechanik (IfH).Für eine zuverlässige Modellierung des globalen Kohlenstoffkreislaufs (und somit des globalen Wärmehaushalts) sind detaillierte Kenntnisse über die Menge an Treibhausgasemission/-absorption durch die Wasseroberfläche erforderlich. Die meisten Modelle zur Vorhersage des Gastransferkoeffizienten an der Wasser-/Luftgrenzfläche beruhen nach wie vor hauptsächlich auf empirisch ermittelten Gleichungen, in denen nur die Windgeschwindigkeit als Parameter in Betracht gezogen wird, obwohl der Beitrag des temperaturbedingten Auftriebs zum Gesamttransfer signifikant ist, vor allem bei niedrig bis mittleren Windbedingungen. Um die Genauigkeit der Bestimmung des Gastransferkoeffizienten an der Grenzfläche zu verbessern, wird eine detaillierte Beschreibung des auftriebsgesteuerten Gasaustausches in tiefen Wasserkörpern benötigt. Da bei mäßig bis schwer löslichen Gasen (z.B. Kohlendioxid, Sauerstoff, Methan) der Stofftransfer in einer sehr dünnen Schicht an der Wasseroberfläche stattfindet, ist es eine besondere Herausforderung die Transportprozesse innerhalb dieser dünnen Schicht aufzulösen. Trotz fortgeschrittener Entwicklung der optischen Messtechnik, liegen keine Daten von simultanen Vermessungen der Temperatur- und Gaskonzentrationsfelder unter gut-kontrollierten Laborbedingungen vor. In diesem Projekt wird der Transferprozess von Wärme- und Gas, induziert durch Oberflächenkühlung bei gleichzeitigem Messen der dynamischen Verteilung von Temperatur- und Gaskonzentration (i) auf der Wasseroberfläche und (ii) in einem vertikalen Schnitt im Wasserkörper, untersucht. Hierzu wird ein komplettes lifetime-based laser induced fluorescence System, geeignet um die Sauerstoffdynamik auch innerhalb der dünnen Grenzschicht aufzulösen, entwickelt. Um die Dynamik der Wärmestrukturen an der Oberfläche zu erfassen, wird eine hochpräzise Infrarot Kamera eingesetzt. Für die Ermittlung der 2D Wärmestrukturen im Wasserkörper wird eine intensitätsbasiertes LIF-Thermometrie System angewendet. Neue erste synoptische Labordaten von Wärme- und Gaskonzentrationsfeldern unter konvektionsinduzierter Strömung im relativ tiefen Wasser können damit dargestellt werden. Die Korrelation zwischen thermal und gas Plumes wird bestimmt und deren geometrischen Merkmale sowohl an der Wasseroberfläche als auch im Wasserkörper ermittelt. Des Weiteren wird der Zusammenhang zwischen diesen Merkmalen und der Wärme- und Gasflüsse ermittelt. Eine Reihe von Messungen im Wasserkörper werden zur Bestimmung der Transfergeschwindigkeit (k) über eine große Bandbreite von Temperaturunterschieden zwischen Wasserkörper und Luft durchgeführt. Dies ermöglicht den Zusammenhang zwischen k und der Rayleighzahl des Wasserkörpers zu bestimmen und mit den k-Werten, die durch direkte Quantifizierung anhand der detaillierten simultanen Messungen ermittelt werden, zu vergleichen. Dazu, werden für ausgewählte Fälle PIV- Messungen durchgeführt, um Informationen zum overall Geschwindigkeitsfeld zur Verfügung zu stellen.
Das Projekt "Mathematische Modelle fuer die Simulation bodennaher Luftbewegungen" wird/wurde ausgeführt durch: Technische Hochschule Darmstadt, Institut für Wasserbau, Fachgebiet Ingenieurhydrologie und Hydraulik.Die Berechnung sog. Flurwinde, die bei an sich windstillen Wetterlagen als Folge unterschiedlich rascher abendlicher Abkuehlungsvorgaenge entstehen, spielt im Zusammenhang mit der Lufterneuerung im innerstaedtischen Bereich eine bedeutende Rolle. Im Sinne hydraulischer Fragestellungen ist dieses Flurwindproblem den Dichtestroemungen zuzuordnen, allerdings mit der Besonderheit eines longitudinalen Dichtegradienten. Ausgehend von den Erhaltungssaetzen der Hydromechanik fuer Masse, Impuls und Energie, letztere unter Einschluss des Waermetransports, koennen bei Auffassung des Flurwindproblems als schichtenartigem Dichtestrom sog. tiefengemittelte Differentialgleichungen gewonnen werden, mit deren Hilfe die zeitliche und raeumliche Entwicklung des Flurwinds angegeben werden kann. Der diesbezuegliche EDV-Aufwand ist allerdings nicht unbetraechtlich. Kommt es jedoch nur darauf an, Kriterien zu gewinnen, die es erlauben, eine groessere bauliche Veraenderung im Umfeld einer Stadt daraufhin zu ueberpruefen, ob sie sich moeglicherweise nachteilig auf die Beseitigung innerstaedtischer Waermeinseln wegen Behinderung der Kaltluftzufuhr auswirkt, so genuegt schon eine Vereinfachung des Gleichungssystems zu einer stationaeren eindimensionalen Gleichungsgruppe, um die Reichweite einer von Flurwinden herruehrenden Frischluftzufuhr vergleichend angeben zu koennen.
Das Projekt "Bau und Forschungsarbeiten Lysimeteranlage Glattfelden" wird/wurde ausgeführt durch: Eidgenössische Technische Hochschule Zürich, Institut für Hydromechanik und Wasserwirtschaft.Mit einer Lysimeteranlage wird die Menge und Guete des Sickerwassers unter landwirtschaftlich bewirtschaftetem Boden und unter der Glatt untersucht. Es werden Grundlagen erarbeitet fuer Prognosen ueber die Entwicklung und jahreszeitlichen Einfluesse der Grundwasserqualitaet.
OLGA-Versuchsfläche in Peickwitz/Südbrandenburg | © Biomasse Schraden e. V. Der 21. März ist der Internationale Tag des Waldes und der 22. März der Internationale Tag des Wassers . Sie wurden ausgerufen um jeweils den Schutz und die Bedeutung von Wäldern und Wasser aufmerksam zu machen. Wald bzw. Bäume und Wasser können sich auch gegenseitig unterstützen und schützen. Agroforstsysteme haben grundlegend positive Auswirkungen auf die Schutzgüter Boden, Wasser, Klima, Tier- und Pflanzenwelt sowie auf das Landschaftsbild. Die im Verbundvorhaben OLGA untersuchten Agrarholzstandorte beeinflussen das Mikroklima im und am Fließgewässer. Besonders in warmen Sommermonaten, wo kleinere Fließgewässer regelmäßig austrocknen, sind Gehölzbestände wichtige Schattenspender und haben einen kühlenden Effekt. Das haben Vergleiche der Lufttemperatur innerhalb und außerhalb von Agroforst- bzw. Agrarholzsystemen im Rahmen der Analysen in der Forschungsphase gezeigt. Die gepflanzten Bäume binden darüber hinaus unter anderem CO 2 , fördern den Humusaufbau und reduzieren Erosion und damit Schadstoffeinträge von der benachbarten Nutzfläche in den Bach. Bei einer entsprechenden multifunktionalen Anlage fördern diese Gehölzsysteme die biologische Vielfalt am Gewässerrand und bilden zusammen mit der natürlichen Ufervegetation ein gutes Team zum Erhalt der Gewässerfunktionen und -qualität. Daneben bieten Agroforstsysteme reizvolle Aufenthaltsorte für Wild und andere Tierarten wie Vögel oder Insekten, tragen zum Erhalt der Kulturlandschaft bei und steigern die landschaftliche Ästhetik. Am Ziegelstein befestigte Temperatursonde zum Monitoring der Gewässertemperatur im durch die Agrarholzplantage beschatteten Bereich | © Anke Hahn Eine der OLGA-Versuchsflächen bei Landwirt Domin in Peickwitz im südlichen Brandenburg wurde im Sommer 2022 Schauplatz für einen mdr-Beitrag zur Agroforstwirtschaft. Manuel Wewer vom Institut für Wasserbau und Thermische Hydromechanik an der TU Dresden erklärt ab Minute 6:20 die installierte Technik im und am Peickwitzer Mühlgraben zur Messung der Gewässertemperatur, des Wasserstandes, Lufttemperatur, -feuchte und -druck sowie der Windgeschwindigkeit und Sonneneinstrahlung. Die Messergebnisse geben Aufschluss über die Verschattungsleistung der anliegenden Agrarholzstruktur auf das Fließgewässer. Mehr Informationen und Auswertungen der Messungen finden Sie hier . Hier finden Sie eine Videodokumentation von einer Pflanzaktion und noch mehr zum Thema Agroforst und Wasserschutz , aufbereitet vom Partner-Verbundvorhaben WERTvoll.
Das Projekt "marTech: Erprobung und Entwicklung maritimer Technologien zur zuverlässigen Energieversorgung, Teilvorhaben: marTech-B - Erprobung und Entwicklung zuverlässiger Wellenenergiekonverter in schwimmenden Mehrzweckstrukturen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Technische Universität Carolo-Wilhelmina zu Braunschweig, Leichtweiß-Institut für Wasserbau.Das Ziel von marTech ist es, Teilaspekte der Technologieerprobung und -entwicklung für 1) Tragstrukturen von Offshore-Windenergieanlagen (3.1.4) sowie 2) Anlagen und Technologien zur Nutzung der Wellen- und Tideströmungsenergie (3.5) durch wissenschaftliche Begleitforschung in einer signifikant erweiterten, großmaßstäblichen Versuchseinrichtung im Großen Wellenkanal Hannover voranzutreiben. Konkret werden drei Pilotprojekte zu einem Wellenenergiekonverter, zu einer Filter- und Dichtungsbahn und einem Kolkschutzsystem unter Gewährleistung wirklichkeitsnaher Umweltrandbedingungen zusammen mit der Industrie konzeptioniert und durchgeführt. Das hier beantragte Projekt marTech bildet damit alle wesentlichen Einwirkungen durch Wellen, Tideströmung und die hydro-geotechnischen Prozesse im Seeboden in einer großmaßstäblichen Versuchseinrichtung ab und ermöglicht dadurch wirklichkeitsnahe Verhältnisse unter kontrollierten und reproduzierbaren Laborbedingungen, die es zukünftig erlaubt, neue maritime Technologien zusammen mit der Industrie belastbar zu erproben bzw. weiter zu entwickeln.
Das Projekt "marTech: Erprobung und Entwicklung maritimer Technologien zur zuverlässigen Energieversorgung, Teilvorhaben: marTech-A - Erprobung und Entwicklung zuverlässiger Dichtungs-, Sohl- und Kolkschutzverfahren für maritime Strukturen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Hannover, Ludwig-Franzius-Institut für Wasserbau, Ästuar- und Küsteningenieurwesen.Das Ziel von marTech ist es, Teilaspekte der Technologieerprobung und -entwicklung für 1) Tragstrukturen von Offshore-Windenergieanlagen (3.1.4) sowie 2) Anlagen und Technologien zur Nutzung der Wellen- und Tideströmungsenergie (3.5) durch wissenschaftliche Begleitforschung in einer signifikant erweiterten, großmaßstäblichen Versuchseinrichtung im Großen Wellenkanal Hannover voranzutreiben. Konkret werden drei Pilotprojekte zu einem Wellenenergiekonverter, zu einer Filter- und Dichtungsbahn und einem Kolkschutzsystem unter Gewährleistung wirklichkeitsnaher Umweltrandbedingungen zusammen mit der Industrie konzeptioniert und durchgeführt. Das hier beantragte Projekt marTech bildet damit alle wesentlichen Einwirkungen durch Wellen, Tideströmung und die hydro-geotechnischen Prozesse im Seeboden in einer großmaßstäblichen Versuchseinrichtung ab und ermöglicht dadurch wirklichkeitsnahe Verhältnisse unter kontrollierten und reproduzierbaren Laborbedingungen, die es zukünftig erlaubt, neue maritime Technologien zusammen mit der Industrie belastbar zu erproben bzw. weiter zu entwickeln.
Origin | Count |
---|---|
Bund | 259 |
Kommune | 2 |
Land | 15 |
Wirtschaft | 4 |
Type | Count |
---|---|
Förderprogramm | 256 |
Text | 2 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 2 |
offen | 258 |
Language | Count |
---|---|
Deutsch | 255 |
Englisch | 14 |
Resource type | Count |
---|---|
Keine | 203 |
Webdienst | 2 |
Webseite | 57 |
Topic | Count |
---|---|
Boden | 188 |
Lebewesen & Lebensräume | 165 |
Luft | 121 |
Mensch & Umwelt | 260 |
Wasser | 205 |
Weitere | 258 |