The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. Daily observations are binned onto a regular latitude-longitude grid. This product displays the ozone (O3) concentration globally (in Dobson Unit). The ozone layer in the stratosphere protects the biosphere from harmful solar ultraviolet radiation. Ozone in troposphere can pose risks to the health of humans, animals, and vegetation. This product is generated in the scope of the DLR project INPULS. INPULS develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Cloud Fraction (CF) around the globe. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The radiometric cloud fraction is retrieved from the UV using the OCRA algorithm. Daily observations are binned onto a regular latitude-longitude grid. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Nitrogen Dioxide (NO2) near surface concentration for Germany and neighboring countries as derived from the POLYPHEMUS/DLR air quality model. Surface NO2 is mainly generated by anthropogenic sources, e.g. transport and industry. POLYPHEMUS/DLR is a state-of-the-art air quality model taking into consideration - meteorological conditions, - photochemistry, - anthropogenic and natural (biogenic) emissions, - TROPOMI NO2 observations for data assimilation. This Level 4 air quality product (surface NO2 at 15:00 UTC) is based on innovative algorithms, processors, data assimilation schemes and operational processing and dissemination chain developed in the framework of the INPULS project. The DLR project INPULS develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Cloud-Top Height (CTH) around the globe. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud-top height is retrieved from the O2-A band using the ROCINN algorithm. Daily observations are binned onto a regular latitude-longitude grid. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Cloud Optical Thickness (COT) around the globe. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud optical thickness is retrieved from the O2-A band using the ROCINN algorithm. Daily observations are binned onto a regular latitude-longitude grid. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Formaldehyde (HCHO) concentration around the globe. The major HCHO sources are vegetation, fires, traffic and industrial sources. Daily observations are binned onto a regular latitude-longitude grid. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the sulphur dioxide (SO2) concentration around the globe. Sulphur dioxide enters the atmosphere through volcanic eruptions and human-related activities. Daily observations are binned onto a regular latitude-longitude grid. This product is created in the scope of the project INPULS. The DLR INPULS project develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
null SAMOSEE-BW: Satellitenbasiertes Monitoring von Seen in BW Baden-Württemberg/Karlsruhe/ Langenargen. Mit der nun veröffentlichten Broschüre „Satellitenbasiertes Monitoring von Stehgewässern in Baden-Württemberg“ (SAMOSEE-BW) gibt das Institut für Seenforschung der LUBW Landesanstalt für Umwelt Baden-Württemberg erstmals wissenschaftlich interessierten Bürgerinnen und Bürgern einen detaillierten Einblick in das Leuchtturmprojekt. „Wir sind stolz auf das Leuchtturmprojekt SAMOSEE-BW. Es ist Teil der Digitalisierungsstrategie des Landes Baden-Württemberg für das Handlungsfeld „Smarte Umweltdaten“, so Werner Altkofer, stellvertretender Präsident der LUBW. „Wir nutzen dafür Daten der Erdbeobachtungssatelliten der europäischen (ESA) und der amerikanischen Weltraumagentur (NASA). Diese haben mit ihren Messsensoren die gesamte Landoberfläche und damit auch die Seen im Blick. Mit diesen Möglichkeiten der Fernerkundung sind neue effektivere Monitoringkonzepte für die Seen Baden-Württembergs möglich“, erläutert der stellvertretende Präsident. In Baden-Württemberg gibt es 28 Seen mit einer Fläche von mehr als 50 Hektar, die regelmäßig im Zuge der Wasserrahmenrichtlinie der Europäischen Union überwacht werden müssen. Von besonderer Bedeutung ist der Bodensee, der nicht nur Touristen anzieht, sondern insgesamt rund fünf Millionen Menschen mit Trinkwasser versorgt. Darüber hinaus gibt es 261 Stehgewässer, die zwischen 10 und 50 Hektar groß sind – und rund 1300 natürliche und künstliche Stehgewässer zwischen einem und zehn Hektar. „Mit den klassischen Methoden der Probenahmen ist ihre kontinuierliche Überwachung kaum möglich. Die Fernerkundung kann künftig Zeit, Arbeit und Geld sparen und es können mehr Seen als bisher in das Gewässermonitoring einbezogen werden. Das ist für den Schutz der Seen als wertvolle Ökosysteme ebenso hilfreich wie für ihre Nutzung beispielsweise für die Freizeitgestaltung“, erläutert Altkofer. Die Satelliten liefern bei ihren häufigen Überfliegungen eine Flut von Rohdaten. Diese so zu interpretieren, dass sie anschließend in Tabellen, Grafiken und Abbildungen schnell erfassbare Information zur Gewässerqualität liefern, ist eine Herausforderung. Bewertungen und eventuelle Korrektur der Rohdaten sowie spezielle Computerprogramme und Arbeitsroutinen sind dafür erforderlich. In den vergangenen zwei Jahren haben die Wissenschaftlerinnen und Wissenschaftler des in Langenargen ansässigen Instituts hierfür die Voraussetzungen geschaffen. Vorrangig werden dabei diejenigen Gewässerqualitätsparameter berücksichtigt, die für die Bewertung von Seen ein besonderes Gewicht haben, wie Chlorophyll-a sowie Trübung und Sichttiefe. Auch die Temperatur an der Seeoberfläche wird erfasst. Darüber hinaus sind satellitenbasierte Informationen über die Gewässertrophie von Interesse und Daten, die auf Blaualgen schließen lassen. Entsprechend liefern künftig einige wesentliche Wasserqualitätsparameter – erfasst per Satellit – erste Informationen über den Zustand der Gewässer in Baden-Württemberg. Falls erforderlich, werden dann weitere detaillierte seenkundliche Untersuchungen durchgeführt. Überfliegt ein Erdbeobachtungssatellit einen See bei schönem Wetter im Sommer, liefert er hervorragende Daten. Im Winter dagegen sieht es wegen des flach einfallenden Sonnenlichtes schlecht aus. Und auch sonst können Wolken, Dunst und Effekte, etwa an Übergangslinien wie dem Ufer, die Messergebnisse mehr oder weniger stark beeinträchtigen. Dies gilt es bei der Interpretation der Daten zu berücksichtigen. Derzeit werden bei der Fernüberwachung von Gewässern vor allem optische Sensoren eingesetzt, die ein weites Lichtspektrum auswerten. Es gibt aber auch Sensoren, die mit Radarwellen arbeiten oder neuartige „Messaugen“, die sogenannten Hyperspektralsensoren. Sie können künftig weitere wertvolle Informationen liefern und aktuelle Nachteile der optischen Erfassung ausgleichen. Derzeit dauert es etwa ein Vierteljahr, bis die von den Satelliten gelieferten Messdaten so weiterverarbeitet sind, dass sie alltagstauglich in das Gewässermonitoring der LUBW einfließen können. Dies reicht für den vorsorgenden Gewässerschutz und die Fragestellungen der praktischen Wasserwirtschaft in der Regel aus. Um ein Warnsystem mit sehr kurzen Reaktionszeiten zu verwirklichen, müssen die entsprechenden Voraussetzungen im Hinblick auf die Prozessierung der Daten, sowohl bei der Hardware als auch der Software, erst noch entwickelt werden. Dies ist eines der nächsten Ziele der Wissenschaftlerinnen und Wissenschaftler in Langenargen. „Insgesamt zeigt das im Rahmen der Digitalisierungsstrategie des Landes durchgeführte Projekt SAMOSEE-BW deutlich, dass im noch jungen Arbeitsgebiet der Fernerkundung und Verarbeitung digitaler Messdaten viel Innovationspotenzial steckt, das unser aktuell bestehendes Umweltmonitoring sinnvoll ergänzt und erweitert“, so Altkofer. Weitere Details zum Projekt finden Sie in der nun veröffentlichten Broschüre: Satellitenbasiertes Monitoring von Stehgewässern in Baden-Württemberg Weitere interessante Details am Beispiel der Erfassung der Algenblüte finden Sie im LUBW-Blog: LUBW Monatsthema Satellitenfernerkundung: Die Seen von oben im Blick behalten Bei Rückfragen wenden Sie sich bitte an die Pressestelle der LUBW. Telefon: +49(0)721/5600-1387 E-Mail: pressestelle@lubw.bwl.de
The status, changes, and disturbances in geomorphological regimes can be regarded as controlling and regulating factors for biodiversity. Therefore, monitoring geomorphology at local, regional, and global scales is not only necessary to conserve geodiversity, but also to preserve biodiversity, as well as to improve biodiversity conservation and ecosystem management. Numerous remote sensing (RS) approaches and platforms have been used in the past to enable a cost-effective, increasingly freely available, comprehensive, repetitive, standardized, and objective monitoring of geomorphological characteristics and their traits. This contribution provides a state-of-the-art review for the RS-based monitoring of these characteristics and traits, by presenting examples of aeolian, fluvial, and coastal landforms. Different examples for monitoring geomorphology as a crucial discipline of geodiversity using RS are provided, discussing the implementation of RS technologies such as LiDAR, RADAR, as well as multi-spectral and hyperspectral sensor technologies. Furthermore, data products and RS technologies that could be used in the future for monitoring geomorphology are introduced. The use of spectral traits (ST) and spectral trait variation (STV) approaches with RS enable the status, changes, and disturbances of geomorphic diversity to be monitored. We focus on the requirements for future geomorphology monitoring specifically aimed at overcoming some key limitations of ecological modeling, namely: the implementation and linking of in-situ, close-range, air- and spaceborne RS technologies, geomorphic traits, and data science approaches as crucial components for a better understanding of the geomorphic impacts on complex ecosystems. This paper aims to impart multidimensional geomorphic information obtained by RS for improved utilization in biodiversity monitoring. © 2020 by the authors.
The Medium Resolution Imaging Spectrometer (MERIS) on Board ESA’s ENVISAT provides spectral high resolution image data in the visible-near infrared spectral region (412-900 nm) at a spatial resolution of 300 m. For more details on ENVISAT and MERIS see http://envisat.esa.int/ Spectral high resolution measurements allow to assess different water constituents in optically complex case-2 waters (IOCCG, 2000). The main groups of constituents are Chlorophyll, corresponding to living phytoplankton, suspended minerals or sediments and dissolved organic matter. They are characterised by their specific inherent optical properties, in particular scattering and absorption spectra. The Baltic Sea Water Constituents product was developed in a co-operative effort of DLR (Remote Sensing Technology Institute IMF, German Remote Sensing Data Centre DFD), Brockmann Consult (BC) and Baltic Sea Research Institute (IOW) in the frame of the MAPP project (MERIS Application and Regional Products Projects). The data are processed on a regular (daily) basis using ESA standard Level-1 and -2 data as input and producing regional specific value added Level-3 products. The regular data reception is realised at DFD ground station in Neustrelitz. For more details the reader is referred to http://wdc.dlr.de/sensors/meris/ and http://wdc.dlr.de/sensors/meris/documents/Mapp_ATBD_final_i3r0dez2001.pdf This product provides monthly maps.
Origin | Count |
---|---|
Bund | 55 |
Land | 21 |
Type | Count |
---|---|
Förderprogramm | 34 |
Text | 1 |
unbekannt | 21 |
License | Count |
---|---|
geschlossen | 2 |
offen | 41 |
unbekannt | 13 |
Language | Count |
---|---|
Deutsch | 35 |
Englisch | 31 |
Resource type | Count |
---|---|
Keine | 25 |
Webdienst | 7 |
Webseite | 31 |
Topic | Count |
---|---|
Boden | 41 |
Lebewesen & Lebensräume | 46 |
Luft | 34 |
Mensch & Umwelt | 56 |
Wasser | 40 |
Weitere | 56 |