Das Projekt "Etude des processus physico-chimiques lies a l'eutrophisation des lacs; cycle du phosphore dans les lacs (FRA)" wird/wurde ausgeführt durch: Universite de Geneve, Departement de Chimie Analytique et Minerale.Etude des phenomenes, au niveau physique et moleculaire, qui influencent le cycle du phosphore dans l'hypolimnion des lacs eutrophes et a l'interface sediment-eau. Etude des colloides et particules resultant de ces reactions et qui influencent l'ensemble de la circulation des composes chimiques dans le lac. (FRA)
Das Projekt "Beeintraechtigung des Uferfiltrates an verschiedenen belasteten Berliner Seen durch algenbuertige Schadstoffe und Auswirkungen von Sanierungsmassnahmen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Bundesgesundheitsamt, Institut für Wasser-, Boden- und Lufthygiene.Das Spektrum der fluechtigen organischen Stoffe aus Oberflaechenwasser und Uferfiltrat wurde vergleichend an vier Berliner Gewaessern untersucht. Im Vordergrund standen dabei Stoffe, die von Algen abgegeben werden koennen. Im Oberflaechenwasser wurde ein breites Spektrum fluechtiger Stoffe gefunden, darunter eine Vielzahl biogener Verbindungen (Nor-Carotinoide sowie andere Terpene, Octatrien-Isomere, Alkane, Aldehyde, Alkohole und im anaeroben Hypolimnion auch Schwefelverbindungen). Diese Stoffe konnten in der Regel der Populationsentwicklung spezifischer Algenarten zugeordnet werden und zeigten somit auch einen Zusammenhang zum Trophiegrad der Gewaesser: die hoechste Vielfalt an fluechtigen biogenen Stoffen wurde in dem See mit der geringsten Naehrstoffbelastung und der am staerksten ausgepraegten thermischen Schichtung gefunden - im Schlachtensee. Dies ist auf die hohe Artenvielfalt infolge der erfolgreichen Sanierung dieses Sees zurueckzufuehren. Probleme mit Geruchsstoffen traten ebenfalls an diesem See auf. Sie wurden durch 2,4-Heptadienal und 2,4-Decadienal verursacht, die von Chrysophyceen-Arten abgegeben werden, die in den anderen, staerker eutrophierten Gewaessern nicht vorkommen. In den beiden hyptertrophen Gewaessern Wannsee und Havel trat der fuer die dort dominierenden Cyanobakterien typische Geruchsstoff, das Geosmin, zwar auf, jedoch in weniger geruchsintensiven Konzentrationen.
Das Projekt "Spatial and temporal distribution patterns of plankton in lakes: Abiotic forcing and organismic interactions with special emphasis on Planktothrix rubescens" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Konstanz, Fachbereich Biologie, Limnologisches Institut, Arbeitsgruppe Umweltphysik.The aim of the project is to investigate the role of physical forcing, resource availability, and organismic interactions for the spatial and temporal distribution patterns of plankton in lakes. The research is focused on the distribution patterns of the buoyant cyanobacterium Planktothrix rubescens in Lake Ammer and compares the abundance of P. rubescens with the temporal and spatial variability of abiotic conditions and of phyto- and zooplankton. The main hypotheses are that (1) transport by internal wave motions has a substantial influence on the horizontal distribution patterns of P. rubescens and also affects the distribution of other phyto- and zooplankton; (2) vertical water column motions associated with internal waves cause fluctuations in the vertical layering of P. rubescens and thus alters its competitive abilities; (3) horizontal differences in habitat conditions, i.e. limited vertical water column depth in bays and resource. gradients near river inflows, result in longer-term characteristic horizontal distribution patterns of P. rubescens and other plankton; (4) layers of toxic P. rubescens may interfere with the vertical migration of zooplankton. These research questions will be addressed in extensive field experiments measuring horizontal and vertical distribution patterns of plankton and abiotic conditions at temporal scales ranging from minutes to several weeks. In-situ measuring techniques for plankton and abiotic parameters, providing sufficient temporal and spatial resolution, will be combined with water sample analyses to support them. The distribution of P. rubescens will be measured by using our newly developed in-situ technique that combines information from optic and acoustic instruments. The field experiments will be complemented with 3D and 1D model approaches. The intension of the modeling work is to support the interpretation of the field data by performing numerical experiment. s that investigate the response of horizontal distribution pat. terns of P. rubescens to physical forcing, patchy nutrient distribution (e.g. river inflow) or the presence of a shallow bay and by studying the implications of water column depth, internal wave induced fluctuations in light intensity, and grazing for the layering of P. rubescens in a vertical water column.
Das Projekt "Bewertung der fischereilichen Entwicklung und der Nutzungsmöglichkeiten der Braunkohletagebauseen Ludwigsee, Holzweißiger See (Holzweißig Ost) und Zöckeritzer See" wird/wurde ausgeführt durch: Institut für Binnenfischerei e.V., Potsdam-Sacrow.Zielstellung: Für die aufgeführten Seen wurden die Lebensbedingungen für Fische betrachtet, das fischereiliche und fischfaunistische Leitbild erarbeitet, die Fischbestände untersucht und gegebenenfalls Grundlagen für die zukünftige fischereiliche Nutzung erarbeitet. Material und Methoden: Die vorliegenden Gutachten zur Gewässerentwicklung und zum Gewässerzustand der drei Seen des Tagebaukomplexes Goitzsche wurden ausgewertet. Zur Erfassung und Bewertung der Fischbestände wurden die drei Seen im Sommer 2011 befischt. Im Ludwigsee war bereits 2005 eine erste Befischung durchgeführt worden. Ergebnisse: Während 2005 im rund 90 ha großen, oligotrophen Ludwigsee einige Fische, v. a. Barsche und Plötzen, gefangen wurden, wies der See 2011 infolge der aufgetretenen Versauerung keine geeigneten Lebensbedingungen für Fischen mehr auf. Der 48 ha große, oligotrophe Holzweißiger See war 2011 pH-neutral, allerdings ist eine künftige Versauerung nicht ausgeschlossen. Der See ist mit dem natürlichen fischereilichen Seentyp eines Maränensees vergleichbar, die flachen Bereiche könnten Merkmale eines Hecht-Schleie-Sees aufweisen. 2011 wurden sieben Fischarten, Barsch, Blei, Karpfen, Kaulbarsch, Plötze, Rotfeder und Schleiee nachgewiesen. Am häufigsten waren Plötze, Barsch und Rotfeder. Die Bruttoenergiegehalte der Fische wiesen auf günstige Ernährungsbedingungen hin. Der 26,5 ha große, oligotrophe Zöckeritzer See ist mit dem Holzweißiger See über einen Flachwasserbereich verbunden. Der See weist im Norden ein tiefes, meromiktisch geschichtetes Becken mit niedrigen hypolimnischen Sauerstoffkonzentrationen und im Süden einen Flachwasserbereich auf. Die pH-Werte lagen im Bereich von 4,7 - 6,5. Insgesamt wurden 22 Fische der Arten Barsch, Giebel, Plötze, Rotfeder und Schleiee gefangen. Gegenwärtig bietet der See Fischen keine optimalen Lebensbedingungen. Sollten sich die Bedingungen im Nordbecken nicht verschlechtern, ist die Entwicklung eines artenarmen und barschdominierten Fischbestandes denkbar, wie er in einigen Talsperren zu finden ist. Die Flachwasserbereiche könnten der Fischgemeinschaft eines Hecht-Schleie-Sees Lebensraum bieten, wenn sich stabile neutrale pH-Werte einstellen.
Für die See-Bewertung mit Phytoplankton sind mindestens sechs Probenahmen pro Jahr in der Vegetationsperiode von März/April bis Oktober/November vorzusehen, wobei mindestens vier Untersuchungstermine im Zeitraum Mai bis September liegen sollen. Über dem tiefsten Punkt des Sees sollen von einem Boot aus mit einem Wasserschöpfer Planktonproben entnommen werden. Zum Auffinden der richtigen Stelle sind Tiefenkarten wichtig. Vor jeder Untersuchung sollte eine Überprüfung mit Echolotung oder Lotung und ggf. GPS erfolgen. Für Langzeituntersuchungen ist eine Bojen-Markierung zu empfehlen. Optimal ist die Verwendung eines Tiefen-Integralschöpfers, welcher beim Durchfahren der Wassersäule kontinuierlich und automatisch eine Mischprobe der gesamten Wassersäule entnimmt. Alternativ können Punktproben, je nach Tiefe des Sees in Schritten von 1 m (polymiktische Seen) oder maximal 2 Metern (tiefe Seen) zu einer Mischprobe vereinigt werden. Hierzu sind verschiedene Wasserschöpfer wie Röhren- oder Schlauch-Sampler (s. Abb. 1) geeignet. Abb. 1: Links: Tiefenintegrierender Probennehmer. Rechts: Friedinger-Schöpfer zur Entnahme von Tiefenstufenproben (Fotos: Eberhard Hoehn) Vor der Probenahme ist festzustellen, welchem Schichtungstyp das zu untersuchende Gewässer zugeordnet wird, da sich die Probenahme bei geschichteten (di- und monomiktischen) und weitgehend ungeschichteten (polymiktischen) Seen unterscheidet. Ein See gilt als geschichtet, wenn mit regelmäßigen Temperaturmessungen im Tiefenprofil und Jahresgang eine durchgehende Schichtungsperiode von mehr als drei Monaten festgestellt wurde. Vor Beginn der Probenahme wird die Sichttiefe mit einer weißen Scheibe (Secchi-Scheibe) gemessen, für die nach ISO 7027-2:2016 ein Durchmesser von 20 cm empfohlen wird (für sehr hohe Sichttiefen > 10 m können größere Scheiben verwendet werden). Sie wird an einem Maßband so lange in die Tiefe abgelassen bis sie gerade nicht mehr sichtbar ist und dann wieder angehoben bis man die Scheibe gerade wieder erkennt. Aus diesen beiden Werten wird ein Mittelwert gebildet. Die so ermittelte Tiefe ist die sogenannte Secchi-Sichttiefe. Zur Ausschaltung von störenden Reflektionen sowie bei bewegter Wasseroberfläche ist zur Verbesserung der Erkennbarkeit der Scheibe ein Secchiskop – eine Sichtröhre mit Glasboden ‑ zu verwenden. Der Tiefenbereich bis zur 2,5fachen Secchi-Sichttiefe ist der Bereich, in dem das Phytoplankton gut wachsen kann. Er wird als euphotische Zone, seine untere Grenze als euphotische Tiefe bezeichnet. Anschließend werden mit Messsonden in festen Tiefenschritten (0,5 oder 1 m) zumindest die Temperaturwerte ermittelt. Weitere relevante Sondenparameter sind Sauerstoffgehalt, elektrische Leitfähigkeit, pH-Wert, Redoxpotenzial und Chlorophyll-a-Konzentration. Es können Tiefenprofile erstellt werden, anhand derer eine Temperaturschichtung, Sauerstoff-Defizite oder Tiefenchlorophyll-Maxima (DCM = deep chlorophyll maximum) festgestellt werden können. Ungeschichtete oder polymiktische Seen sind über das ganze Jahr hinweg bis zum Grund durchmischt. Lediglich in stabilen Wetterlagen können kürzere Phasen der Temperaturschichtung auftreten. In polymiktischen Seen erfolgt die Probenentnahme stets aus der gesamten Wassersäule bis etwa 1 m über Grund, maximal bis in eine Tiefe von 6 m. Trifft man den See z. B. im Hochsommer in einer Phase mit Temperaturschichtung an, so wird die Probenahme dennoch unverändert durchgeführt. In geschichteten Seen ist die "richtige" Probenahmetiefe differenzierter zu ermitteln: Um in geschichteten Seen die Mächtigkeit der oberen durchmischten Schicht, des Epilimnions, festzustellen, wird das Temperatur-Tiefenprofil herangezogen. Wenn sich die Temperatur in der Tiefe schnell abkühlt und die Temperaturänderung 1°K pro Meter überschreitet, liegt eine sog. Sprungschicht vor. Die Zone bis zur Sprungschicht wird als Epilimnion bezeichnet, die Zone der starken Temperaturänderung als Metalimnion und die kühle, in der Temperatur wieder konstantere, darunter liegende Schicht als Hypolimnion. Während der Vollzirkulation mit Temperaturausgleich bis zum Grund ‑ meist im Zeitraum von Herbst bis Frühjahr ‑ soll die Probe aus der durchmischten Schicht bis zur mittleren Tiefe des Sees stammen, jedoch bis maximal 10 m Tiefe, in sehr tiefen Seen mit maximal 20 m Tiefe. Während der Phase der Temperaturschichtung sind folgende Fälle zu unterscheiden: In eher trüben Seen ist das Epilimnion zu beproben. Die euphotische Zone oder -Tiefe (2,5fache Secchitiefe) liegt innerhalb des Epilimnions. In klaren Seen, in denen die euphotische Zone über das Epilimnion hinausgeht und in die Sprungschicht oder sogar ins Hypolimnion hineinragt, muss die Wassersäule bis zur euphotischen Tiefe beprobt werden. Es gilt also: Die "tiefere" Kenngröße (Epilimniontiefe oder euphotische Tiefe) gibt die Probenahmetiefe für die Mischprobe an. Es ist darauf zu achten, dass die Probenahme nicht in ein sauerstoffreies, durch Schwefelwasserstoffbildung oder Nährstoffrücklösung geprägtes Hypolimnion hineinreicht und mindestens einen Meter darüber endet. Ausgeprägte Tiefenchlorophyll-Maxima sollen ebenfalls erfasst werden. Um diese festzustellen, muss allerdings eine Chlorophyll-Sonde (Fluoreszenzsonde) im Einsatz sein. Diese und weitere Details sowie Spezialfälle der Probenahme sind in der Methodenbeschreibung von Nixdorf et al. (2010) und der Europäischen Norm DIN EN 16698 differenziert beschrieben. Aus der so gewonnenen Mischprobe wird in der Regel sowohl die Phytoplanktonprobe als auch die chemische Probe für die Chlorophyll a-Bestimmung und ggf. weitere chemische Parameter (z. B. Gesamtphosphor) entnommen. Probenahme für die Anwendung des Diatomeenindex Profundal (DI-PROF): Die sich über das Jahr im Plankton entwickelnden Kieselalgen (Diatomeen) sinken aufgrund des Gewichts ihrer Schalen auf den Seeboden ab. Am Ende des Jahres befinden sich die Schalen in einer halbflüssigen, oben aufschwimmenden Sedimentschicht und die Probe (ca. 10 ml) wird mit einem Röhrensammler (Kajak-Corer) genommen. Die so ermittelten Kieselalgenbefunde können mit dem Index DI-PROF zur Trophiebewertung herangezogen werden, welcher in den PhytoSee-Index eingerechnet werden kann. An jedem Probenahmetermin sind aus der Mischprobe mindestens zwei Teilproben (1. und 2.) und zusätzlich fakultativ eine Diatomeenprobe (3.) herzustellen: 1. Chlorophyll a-Probe : 0,5-2 Liter (je nach Algendichte) unfixiert in PET-Flaschen, Transport ins Labor dunkel und kühl. Dort Weiterbehandlung. 2. Phytoplanktonprobe : Lugol-fixiert für die Analyse nach Utermöhl-Methodik, Gefäß: 100 ml-Klarglas-Enghalsflasche, im Labor: bei gekühlter und luftdichter Lagerung mindestens für ein halbes Jahr haltbar. 3. Diatomeenprobe (fakultativ) für die spätere Herstellung eines Diatomeenpräparats. Die Wahl der Fixierungsmethode sollte sich an den erforderlichen Lagerzeiten und –möglichkeiten orientieren, s. hierzu Abschnitt " Aufbereitung der planktischen Kieselalgen (Diatomeenpräparat)" Variante " Filterprobe "(empfohlen): 1 Liter (je nach Algendichte) unfixiert in PET-Flasche, Transport ins Labor dunkel und kühl. Dort Filtrierung. Bei mobiler Filtriermöglichkeit (Handfiltriergerät): 100-1.000 ml Probe (je nach Algendichte, deutliche Färbung des Filters erforderlich) werden über Cellulosenitrat-Membranfilter (0,4-1,0 µm) filtriert. Die Filter werden in Plexiglas-Petrischalen gelagert und müssen bis zur endgültigen Lagerung noch Luft-getrocknet werden. Variante " Alkoholprobe " (empfohlen, jedoch kürzere Lagerzeit): Die Vorfixierung der Probe erfolgt vor Ort mit 96%igem Ethanol (unvergällt) oder Isopropanol. 0,9 Liter Probe wird in eine 1 Liter Kautexflasche gefüllt und mit Alkohol aufgefüllt, d. h. im Verhältnis 1:9 vorfixiert. Weiteres Einengen und Nachfixieren im Labor. Variante " Lugolprobe ": 500 ml Probe (je nach Algendichte oder Notwendigkeit einer Rückstellprobe auch 200-1.000 ml möglich) wird mit handelsüblicher Lugol-Lösung (versetzt mit Natriumacetat) in 500 ml-Klarglas-Enghals-Flaschen fixiert bis die Probe cognacfarben ist (ca. 4 ml Lugol pro 200 ml Probe). Zunächst keine Weiterbehandlung im Labor, bei gekühlter und luftdichter Lagerung mindestens für ein halbes Jahr bis maximal ein Jahr haltbar. Die Chlorophyll a-Konzentration (Chl a) einer Wasserprobe wird meist spektralphotometrisch gemessen. Sie korreliert mit der Biomasse des enthaltenen Phytoplanktons, da alle Arten dieses Pigment zur Photosynthese nutzen. Die Wasserproben müssen noch am Probenahmetag mit einer Vakuumpumpe auf einen Glasfilter filtriert werden. Der Filterrückstand enthält die Algen und deren Pigmente. Die Bestimmung der Chlorophyll-a-Konzentration nach der Norm (DIN 38409-H60 2017) beruht auf der ethanolischen Heißextraktion des Filterrückstands einer Wasserprobe und der anschließenden Absorptionsmessung bei 665 nm. Hier werden Phaeopigmente – photosynthetisch nicht mehr wirksame Abbauprodukte des Chlorophylls ‑ miterfasst. Nach Überführung des gesamten Chlorophyll-a in Phaeopigmente durch Ansäuerung wird eine erneute Messung bei 665 nm durchgeführt. Somit kann rechnerisch auf die ursprüngliche Chlorophyll-a-Konzentration der Wasserprobe rückgeschlossen werden. Im Messwert des Chlorophyll-a nach DIN sind die Phaeopigmente nicht mehr enthalten. Ziel der mikroskopischen Analyse ist die Bestimmung des Biovolumens des Phytoplanktons. Die Analyse des Phytoplanktons erfolgt an einem Umkehrmikroskop. Dafür werden die Phytoplankter einen Tag zuvor in Absetzkammern angereichert (s. Abb. 5). Für die Mikroskopie werden die Phytoplankter einen Tag zuvor in Absetzkammern angereichert. Da die Zellkonzentration in Abhängigkeit von der Artenzusammensetzung und der Saison sehr stark schwanken kann, sind Orientierungswerte zur Auswahl des benötigten Absetzvolumens sowie die Chlorophyll a-Konzentration (Chl a) der Probe hilfreich. In der Verfahrensanleitung (Riedmüller et al. 2022) sind Beispiele mit Orientierungswerten genannt. Für die weitere Konservierung oder Weiterverarbeitung der Proben stehen je nach Fixierungsmethode im Gelände mehrere Varianten zur Verfügung. Die Wahl der passenden Methode richtet sich auch danach, wie lange die Probe bis zur endgültigen taxonomischen Bearbeitung gelagert werden muss. Weitere Details in Nixdorf et al. (2010). Variante "Filterprobe" : Zeitnah zur Probenahme bzw. möglichst am selben Tag ist das in der Regel 1 Liter unfixierte Probenvolumen auf Cellulosenitrat-Membranfilter zu filtrieren. Nach anschließender Lufttrocknung können die Filter in Plexiglas-Petrischalen ohne Konservierungsmittel längere Zeit aufbewahrt werden. Anmerkung : Celluloseacetatfilter haben sich nicht bewährt, da diese beim späteren Aufschluss unter heißer Säure und H 2 O 2 verklumpen. Ebenfalls ungeeignet ist die Verwendung von Glasfaserfiltern. Diese hinterlassen beim späteren Aufschluss eine hohe Zahl von Glasfasern, die das mikroskopische Bild der Algen überlagern und damit eine zuverlässige Bearbeitung unmöglich machen. Diese Art der Konservierung ist für Lagerzeiten bis deutlich über ein Jahr geeignet. Variante "Alkoholprobe" : Das vorfixierte Probenmaterial muss im Labor 2-3 Tage in der Kautexflasche absedimentieren. Der Überstand wird anschließend vorsichtig mit einer Wasserstrahlpumpe abgesaugt. Der aufgeschüttelte Rückstand wird in dicht schließende Flaschen abgefüllt und mit 96%igem Ethanol/Isopropanol (unvergällt, d. h. kein Brennspiritus!) im Verhältnis 1:5 nachfixiert. Ein Gesamtvolumen von 100 ml Diatomeen-Suspension ist ausreichend. Zur taxonomischen Bestimmung muss ein Diatomeenpräparat mit Probenaufschluss mittels Wasserstoffperoxid angefertigt werden. Diese Art der Konservierung ist für Lagerzeiten bis rund 6 Monate geeignet. Kühlung (4-8°C) verlängert die mögliche Lagerzeit. Variante "Lugolprobe" : Sind nur Lugol-fixierte Proben verfügbar, muss das jodhaltige Fixierungsmittel vor dem Aufschluss der Diatomeen folgendermaßen ausgewaschen werden: Die Proben werden mindestens 2 Tage zur Absedimentierung stehen gelassen. Der Überstand wird mit einer Wasserstrahlpumpe abgesaugt und mit H 2 O dest. auf ca. 250 ml aufgefüllt. Dieser Auswaschvorgang wird noch zweimal wiederholt. Anschließend kann die Probe zur Analyse aufgeschlossen werden. Diese Art der Konservierung ist mit Kühlung von 4-8°C für Lagerzeiten bis 6 Monate bis ggf. maximal ein Jahr geeignet. Lugol-fixierte Proben dürfen nicht in Plastikflaschen aufbewahrt werden, da das Jod des Fixiermittels von der Flaschenwandung aufgenommen und die Fixierung dann abgeschwächt wird. Zudem kann die Kontrolle der Färbung der Probe (Cognac-farben) wegen der Durchfärbung der PE-Flaschenwände nicht mehr stattfinden.
Das Projekt "Untersuchungen ueber die Durchmischungs- und Austauschbedingungen im Bodensee" wird/wurde ausgeführt durch: Landesanstalt für Umwelt Baden-Württemberg, Institut für Seenforschung.Die innere Durchmischung des Bodensees soll insbesondere im Bereich der Thermokline zur Beurteilung des vertikalen Stoffaustausches, der Waerme- und Sauerstoffuntermischung ins Hypolimnion und des Naehrstoffnachschubs aus dem Hypolimnion, untersucht werden. Vergleichende Messungen verschiedener Parameter, die sich im Stoffaustausch verschieden verhalten.
Die Stehgewässer (Seen) stellen, im Gegensatz zu Fließgewässern, ein geschlossenes Ökosystem dar und sind durch ein vergleichsweise großes Gesamtwasservolumen mit langen Wasseraufenthaltszeiten gekennzeichnet. Je nach der Entstehung des Sees spricht man von künstlich angelegten Seen (Abgrabungsseen, bzw. Baggerseen) oder natürlich entstandenen Seen. Ein See umfasst grundsätzlich die Freiwasserzone (Pelagial) und die Bodenzone (Benthal). Das Pelagial umfasst eine obere, durchlichtete trophogene Zone (Epilimnion), eine Sprungschicht mit einem Temperaturgradienten (Metalimnion), und eine untere tropholytische Wasserschicht (Hypolimnion). Das Benthal lässt sich wiederum in eine durchlichtete Uferzone (Litoral) und eine Tiefenzone (Profundal) unterteilen. Diese Zonen stellen Lebensräume für die unterschiedlichen Biozönosen des Sees dar und sind geprägt von verschiedenen abiotischen Faktoren (Wassertemperatur, pH-Wert, Lichtverfügbarkeit, Nährstoffe, Sauerstoff). Dem Lebensraum entsprechend lassen sich die Lebewesen des Ökosystems See in folgende Kategorien unterteilen: Plankton, Nekton, Neuston/ Pleuston und Benthos. Die autochthone Primärproduktion eines Sees umfasst in erster Linie die photoautotrophe Produktion des Phytoplanktons im Pelagial und der Makrophyten, des Phytobenthos und des Periphytons im Benthal. Im Nahrungsnetz der Ökosystems See schließen sich die Primär- und Sekundärkonsumenten an (z.B. im Pelagial vorkommende Fische und Insektenarten, benthische Makrozoobenthosarten). Tiefere Seen sind in der Regel dimiktisch, das heißt der Wasserkörper unterliegt zweimal im Jahr einer Zirkulation (Frühjahres- und Herbstzirkulation). In Abhängigkeit der Jahreszeit ändert sich die Temperatur des Sees. Im Winter kommt es aufgrund der Dichteanomalie des Wassers zu einer sehr kalten, zum Teil eisbedeckten oberflächennahen Schicht und einer wärmeren, tieferen Schicht von 4 °C am Grund des Sees. Damit ist das Überleben der Fische in den tieferen Wasserschichten des Sees im Winter sichergestellt. Im Frühling setzt eine Frühjahrszirkulation ein und die beiden Wasserschichten mischen sich. Nach der Vollzirkulation hat der See eine konstante Wassertemperatur und ähnliche Sauerstoff- und Nährstoffverhältnisse. Während der Sommerstagnation erwärmt sich das Oberflächenwasser auf über 20 °C, während das Wasser in den tieferen Schichten des Hypolimnions kälter ist. Die im Herbst einsetzenden Stürme führen erneut zu einer Herbstzirkulation und die beiden Wasserschichten durchmischen sich. Ein Team des LANUV bei der Seeuntersuchung, Foto: LANUV/FB 55 Das LANUV NRW – hier der Fachbereich 55 „Ökologie der Oberflächengewässer“ - führt regelmäßig biologische Untersuchungen in 23 Seen und 24 Talsperren mit einer Fläche von mehr als 50 ha durch. Die Seen in NRW sind bis auf 2 natürlich entstandene Altarme des Rheins (Altrhein Bienen-Prast und Altrhein Xanten) durch Menschenhand geschaffene Abgrabungsseen der Kies- und Sandindustrie oder des Braunkohletagebaus und damit gemäß Terminologie der WRRL künstliche Gewässer. Talsperren sind aufgestaute und damit erheblich veränderte Fließgewässer, die mit ihren limnischen Eigenschaften stehenden Gewässern am ähnlichsten sind. Grundlage für diese Gewässeruntersuchungen ist die im Jahr 2000 beschlossene Wasserrahmenrichtlinie (WRRL) die in Deutschland rechtlich durch die Novellierung des Wasserhaushaltsgesetzes (WHG) und durch die Oberflächengewässerverordnung (OGewV 2011, 2016) umgesetzt ist. Nach diesen Regelungen soll der gute Gewässerzustand erhalten bleiben und – wo dies nicht mehr der Fall ist – soll schrittweise spätestens bis zum Jahr 2027 der gute Zustand erreicht werden. Erheblich veränderte und künstliche Gewässer müssen das gute ökologische Potenzial erreichen. Foto: LANUV/FB 55 Foto: LANUV/FB 55 Gewässerüberwachung Die Untersuchung und Bewertung der Flora und Fauna liefert wesentliche Grundlagen z.B. zum Erhalt und zur Verbesserung der Artenvielfalt, des Gewässerschutzes und des Erholungs- und Freizeitwertes der Seen und Talsperren in NRW. Tiere und Pflanzen sind wichtige Bioindikatoren. In der Zusammensetzung der Arten und der Häufigkeit ihres Vorkommens spiegeln diese Organismen die Lebensbedingungen über einen längeren Zeitraum wider und geben Auskunft über eine längerfristige Belastungssituation. Chemische Analysen beschreiben lediglich eine Momentaufnahme. Für die Stehgewässer ist das Phytoplankton die wichtigste biologische Qualitätskomponente. Biologische Qualitätskomponenten
Das Projekt "Limnologische Untersuchungen der Baggerseen Haltern Ost und Haltern West" wird/wurde gefördert durch: Quarzwerke Haltern GmbH. Es wird/wurde ausgeführt durch: Institut für Wasserforschung GmbH.Veranlassung: Die Förderung von Kiesen und Sanden in Kiesgruben oder Baggerseen hat eine drastische Veränderung des Landschaftsbildes zur Folge. Die Ausbildung neuer Seen- und Freizeitgebiete wird hierbei im allgemeinen eher als positiver Effekt gewertet. Aufgrund des Förderbetriebs kann es jedoch zu Veränderungen der Wassergüte der betroffenen Oberflächengewässer und zu einer Beeinträchtigung des abstromigen Grundwassers kommen. Um mögliche zeitliche Veränderungen der Gewässergüte - etwa durch Freisetzung von Pflanzennährstoffen (Eutrophierung) - erfassen zu können, findet eine regelmäßige limnologische Überwachung der Baggerseen Haltern Ost und West statt, die von der Quarzwerke Haltern GmbH für die Förderung von Sand genutzt werden. Parallel werden das zu- und abfließende Grundwasser an den beiden Seen untersucht, um eine Beeinflussung des unterirdischen Wassers durch die bis zu 30 m tiefen Seen erkennen und bewerten zu können. Diese Untersuchungen finden seit 1982 im zweijährigen Abstand statt. Vorgehen: Die Probenahmen erfolgen jeweils am Ende der Sommerperiode, wenn die Herbstzirkulation, die eine Vermischung des Wassers bis in tiefe Schichten bedingt, noch nicht eingesetzt hat. Zu diesem Zeitpunkt muss die Belastung der Seen mit Nährstoffen saisonal bedingt als am höchsten eingeschätzt werden. Für die Beurteilung des limnologischen Zustandes der beiden Baggerseen und der Grundwasserbeschaffenheit in dem jeweils zu- und abfließenden Grundwasserstrom werden die in einer Tabelle aufgeführten Parameter bestimmt. Ergebnisse: Beide Baggerseen können aufgrund ihrer Nitrat- und Phosphatgehalte sowie der Planktondichte und -zusammensetzung als mesotrophe, wenig belastete Gewässer klassifiziert werden. Die Sprungschicht liegt etwa in 6-10 m Tiefe. Auch die tieferen Schichten im Hypolimnion der Seen weisen noch eine gute Versorgung mit Sauerstoff auf. Im See West ist es seit 1982 durch den Förderbetrieb sogar eher zu einer Erhöhung des Sauerstoffgehaltes im Hypolimnion gekommen. Das zulaufende Grundwasser für diesen See zeichnet sich durch einen niedrigen pH-Wert, hohe Nitratwerte und einen hohen Gehalt biologisch schwer abbaubarer Kohlenstoffverbindungen aus. Nach dem Durchtritt durch den See West liegen im ablaufenden Grundwasser dagegen verbesserte Bedingungen mit niedrigen DOC- und Nitratwerten vor. Hier treten jedoch zum Teil sehr niedrige Sauerstoffgehalte auf, was auf biologische Abbauprozesse während der Passage durch den See schließen lässt. Die Situation sowohl in den Baggerseen als auch im Grundwasserbereich kann trotz leichter Schwankungen im Nährstoff- und Sauerstoffgehalt seit Beginn der Messungen in den letzten Jahren als stabil angesehen werden. Teilweise hat sogar eine Verbesserung, insbesondere der Sauerstoffsituation in den Seen stattgefunden.
Das Projekt "Limnologische Untersuchungen von Seen für die Förderung von Quarzsanden" wird/wurde gefördert durch: Quarzwerke Haltern GmbH. Es wird/wurde ausgeführt durch: Institut für Wasserforschung GmbH.Veranlassung: Die Förderung von Kiesen und Sanden in Kiesgruben oder Baggerseen hat eine drastische Veränderung des Landschaftsbildes zur Folge. Die Ausbildung neuer Seen- und Freizeitgebiete wird hierbei im Allgemeinen eher als positiver Effekt gewertet. Aufgrund des Förderbetriebs kann es jedoch zu Veränderungen der Wassergüte der betroffenen Oberflächengewässer und zu einer Beeinträchtigung des abstromigen Grundwassers kommen. Um mögliche zeitliche Veränderungen der Gewässergüte - etwa durch Freisetzung von Pflanzennährstoffen (Eutrophierung) - erfassen zu können, findet eine regelmäßige limnologische Überwachung zweier Baggerseen statt, die von der Quarzwerke Haltern GmbH für die Förderung von Sand genutzt werden. Parallel werden das zu- und abfließende Grundwasser an den beiden Seen untersucht, um eine Beeinflussung des unterirdischen Wassers durch die bis zu 30 m tiefen Seen erkennen und bewerten zu können. Diese Untersuchungen finden seit 1982 im zweijährigen Abstand statt. Vorgehen: Die Probennahmen erfolgen jeweils am Ende der Sommerperiode, wenn die Herbstzirkulation, die eine Vermischung des Wassers bis in tiefe Schichten bedingt, noch nicht eingesetzt hat. Zu diesem Zeitpunkt muss die Belastung der Seen saisonal bedingt als am höchsten eingeschätzt werden. Für die Beurteilung des limnologischen Zustandes der beiden Baggerseen und der Grundwasserbeschaffenheit in dem jeweils zu- und abfließenden Grundwasserstrom werden die in einer Tabelle aufgeführten Parameter bestimmt. Ergebnisse: Beide Baggerseen können aufgrund ihrer Nitrat- und Phosphatgehalte sowie der Planktondichte und -zusammensetzung als mesotrophe, wenig belastete Gewässer klassifiziert werden. Die Sprungschicht liegt etwa in 6-10 m Tiefe. Auch die tieferen Schichten im Hypolimnion der Seen weisen noch eine gute Versorgung mit Sauerstoff auf. Im See West ist es seit 1982 durch den Förderbetrieb sogar eher zu einer Erhöhung des Sauerstoffgehaltes im Hypolimnion gekommen. Qualitative Planktonanalysen weisen beide Gewässer als oligo- bis mesotoph (Gewässergüte II) aus. Das zulaufende Grundwasser für diesen See zeichnet sich durch einen niedrigen pH-Wert, hohe Nitratwerte und einen hohen Gehalt biologisch schwer abbaubarer Kohlenstoffverbindungen aus. Nach dem Durchtritt durch den See West liegen im ablaufenden Grundwasser dagegen verbesserte Bedingungen mit niedrigen DOC- und Nitratwerten vor. Hier treten jedoch zum Teil sehr niedrige Sauerstoffgehalte auf, was auf biologische Abbauprozesse während der Passage durch den See schließen lässt. Die Situation sowohl in den Baggerseen als auch im Grundwasserbereich kann trotz leichter Schwankungen im Nährstoff- und Sauerstoffgehalt seit Beginn der Messungen in den letzten Jahren als stabil angesehen werden. Teilweise hat sogar eine Verbesserung, insbesondere der Sauerstoffsituation in den Seen stattgefunden.
Das Projekt "Stoffhaushalt des Bodensees (SFB 248 / Uni Konstanz), Teilprojekt A1: Wasserbewegung und Durchmischungsprozesse im Ueberlinger See" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Heidelberg, Institut für Umweltphysik.Eine wichtige Fragestellung des SFB 248 ist die integrierte Betrachtung von biologischen und physikalischen Prozessen. Die physikalischen Mischungsprozesse sind fuer die biologischen Vorgaenge von grosser Bedeutung. Sie beeinflussen zum einen die Horizontalverteilung von Organismen und sind zum anderen fuer den passiven Transport des Planktons und den Naehrstofftransport vom Hypolimnion in die euphotische Zone verantwortlich. Teilprojekt A1 befasst sich (a) mit den horizontalen und vertikalen Durchmischungsprozessen und (b) mit dem vom Wassertransport unabhaengigen Stofftransport in der Wassersaeule und speziell mit der Anlagerung geloester Spurenstoffe an Partikel. Fuer die Parametrisierung der Prozesse und deren Modellierung ist ein Verstaendnis des Stroemungsverhaltens des Sees notwendig.
Origin | Count |
---|---|
Bund | 54 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 53 |
Text | 1 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 2 |
offen | 53 |
Language | Count |
---|---|
Deutsch | 43 |
Englisch | 19 |
Resource type | Count |
---|---|
Dokument | 2 |
Keine | 44 |
Webseite | 10 |
Topic | Count |
---|---|
Boden | 47 |
Lebewesen & Lebensräume | 53 |
Luft | 44 |
Mensch & Umwelt | 55 |
Wasser | 53 |
Weitere | 55 |