API src

Found 22 results.

Related terms

Bees in Europe and Sustainable Honey Production (BEE SHOP)

Das Projekt "Bees in Europe and Sustainable Honey Production (BEE SHOP)" wird vom Umweltbundesamt gefördert und von Universität Halle-Wittenberg, Fachbereich Biologie, Institut für Zoologie, Arbeitsgruppe Molekulare Ökologie durchgeführt. Honey is among the oldest food products of mankind and beekeeping is deeply rooted in every European culture. Numerous European and national regulations control honey quality, which reflects both the high nutritional and societal value of the product. Yet in an environment with increasing chemical pollution and the wide use of agrochemicals, honey runs high risks of becoming chemically polluted. In addition a broad spectrum of chemicals is used to treat honeybee diseases, further contaminating honey with sometimes highly toxic compounds. The BEE SHOP is a network of ten leading European honeybee research groups in honey quality, pathology, genetics and behaviour as well as selected beekeeping industries, which all share a common interest in promoting Europe's high honey quality standards. The prime goal is to reduce potential sources of honey contamination due to both foraging contaminated nectar and chemotherapy of honeybee diseases. The BEE SHOP will therefore deal with the development of biological resistance to pests and pathogens to avoid chemotherapy. Various European honeybee races and populations will be screened for their disease resistance potential to the main pressing pathogens. Differences in foraging patterns among European honeybees and their underlying mechanisms will be studied to identify behavioural traits reducing contamination. Differences in disease susceptibility will be genetically analysed by QTL mapping. Major loci in the genome will be identified with the aid of the published honeybee genome. SNPs will be developed to allow for selection of specific target genes in both drones and queens before insemination. This will greatly accelerate the selection progress in honeybee breeding allowing for the swift establishment of resistant but efficient stock. New tools for testing honey quality and authenticity will be developed to allow inspections of honey according to the current EC directives on honey quality and organic beekeeping.

Services to support the IMPEL network in connection with joint enforcement actions on waste shipment inspections and to co-ordinate such actions

Das Projekt "Services to support the IMPEL network in connection with joint enforcement actions on waste shipment inspections and to co-ordinate such actions" wird vom Umweltbundesamt gefördert und von BIPRO Beratungsgesellschaft für integrierte Problemlösungen GmbH durchgeführt.

Rechtliche und fachliche Prüfung von ausgewählten Fragen der 'Compliance Assurance' auf EU- und auf nationaler Ebene

Das Projekt "Rechtliche und fachliche Prüfung von ausgewählten Fragen der 'Compliance Assurance' auf EU- und auf nationaler Ebene" wird vom Umweltbundesamt gefördert und von Ecologic Institut gemeinnützige GmbH durchgeführt. Maßnahmen zur Verbesserung des Vollzugs des Umweltrechts ('Environmental Compliance Assurance') haben international und auf Unionsebene erhebliche Bedeutung. So hat die EU Kommission (KOM) 2018 einen Aktionsplan zu Compliance Assurance (APEC) vorgelegt. Auch wenn der Aktionsplan konkrete Maßnahmen nur bis zum Ende der Amtszeit der aktuellen KOM Ende 2019 vorsieht, lassen Umfang und Ansatz des Plans erwarten, dass die Erarbeitung von Umsetzungsmaßnahmen und deren Diskussion über 2019 hinaus stattfinden wird. Für diesen Fall soll das FuE klären, wie die von der KOM geplanten Leitlinien und 'best-practice-Sammlungen' ausgestaltet oder weiterentwickelt werden müssen, damit sie den Vollzug in D wirksam unterstützen. Zu ausgewählten, auf EU-Ebene noch nicht beschlossenen Vorschlägen beantwortet das FuE kurzfristig aufgeworfene Hintergrundfragen. Im APEC-Diskussionsprozess abschließend erarbeitete Maßnahmen bewertet es mit dem Ziel einer optimalen Umsetzung aus rechts- und verwaltungswissenschaftlicher Perspektive. Dabei ist u. a. zu klären, wie sich die freiwillig anzuwendenden Leitlinien, die Empfehlungen und sonstigen Instrumente optimal in die unterschiedlich ausgestalteten Umweltverwaltungssysteme der verfahrensautonomen Bundesländer einfügen lassen, so dass deren Funktionalität nicht beeinträchtigt, sondern verbessert wird. Der Prozess wirft u.a. durch - eine stärkere Verschränkung von ordnungsrechtlicher und anreizorientierter Anwendungsförderung mit der Nutzung von Informationen aus der Zivilgesellschaft,- die (ggf. allgemeine) Zugänglichkeit von ggf. katasterbezogenen weltraumgestützten Aufklärungsdaten und- erweiterte Formen der (grenzüberschreitenden) Zusammenarbeit von Überwachungsbehördenrechtliche Fragen zu Zulässigkeit und Wirkung der Maßnahmen und zum Datenschutz auf. Das Vorhaben baut auf bestehenden Erkenntnissen zu möglichen Verbesserungen im Vollzug des europäischen Umweltrechts (z. B. UBA-Bericht 21/18) auf.

Teilvorhaben C

Das Projekt "Teilvorhaben C" wird vom Umweltbundesamt gefördert und von X-FAB MEMS Foundry GmbH durchgeführt. ;The objective of the proposed collaborative project is a new subject of research and development at the respective clusters/organizations both on the German as well as on the Czech side. Ideas along the major direction of the described plans, i.e. mainly an interweaving of advanced X-ray and electron inspection techniques, have been discussed for a few years, but without starting a funded project. Therefore, the unique opportunity of performing such an ambitious project is supposed to be used through the internationalization plans of Cool Silicon e. V. The project has two objectives. The first objective is to develop an advanced nano X-ray computer tomography inspection system (AXT) with a world-class spatial resolution of less than 100 nm and applications in microelectronics. The X-ray photon energy will be high enough to overcome sample preparation issues of currently available commercial systems. A complete instrument will be built-up and used for application tests within three years. It will make use of a novel scintillation detector and X-ray camera system that will be prepared within the project by Crytur. The second objective encompasses development of correlative methods for tomographic analysis of structures. In particular, workflow integration and evaluation of materials and structures in microelectronics will be the key topic. The project will promote collaboration among partners. The result enables the creation of a tomographic system (AXT) and methods for defect inspection in microelectronic components.

Teilvorhaben B

Das Projekt "Teilvorhaben B" wird vom Umweltbundesamt gefördert und von AXO DRESDEN GmbH durchgeführt. ;The objective of the proposed collaborative project is a new subject of research and development at the respective clusters/organizations both on the German as well as on the Czech side. Ideas along the major direction of the described plans, i.e. mainly an interweaving of advanced X-ray and electron inspection techniques, have been discussed for a few years, but without starting a funded project. Therefore, the unique opportunity of performing such an ambitious project is supposed to be used through the internationalization plans of Cool Silicon e. V. The project has two objectives. The first objective is to develop an advanced nano X-ray computer tomography inspection system (AXT) with a world-class spatial resolution of less than 100 nm and applications in microelectronics. The X-ray photon energy will be high enough to overcome sample preparation issues of currently available commercial systems. A complete instrument will be built-up and used for application tests within three years. It will make use of a novel scintillation detector and X-ray camera system that will be prepared within the project by Crytur. The second objective encompasses development of correlative methods for tomographic analysis of structures. In particular, workflow integration and evaluation of materials and structures in microelectronics will be the key topic. The project will promote collaboration among partners. The result enables the creation of a tomographic system (AXT) and methods for defect inspection in microelectronic components.

Teilvorhaben D

Das Projekt "Teilvorhaben D" wird vom Umweltbundesamt gefördert und von Huber Diffraktionstechnik GmbH & Co. KG durchgeführt. ;The objective of the proposed collaborative project is a new subject of research and development at the respective clusters/organizations both on the German as well as on the Czech side. Ideas along the major direction of the described plans, i.e. mainly an interweaving of advanced X-ray and electron inspection techniques, have been discussed for a few years, but without starting a funded project. Therefore, the unique opportunity of performing such an ambitious project is supposed to be used through the internationalization plans of Cool Silicon e. V. The project has two objectives. The first objective is to develop an advanced nano X-ray computer tomography inspection system (AXT) with a world-class spatial resolution of less than 100 nm and applications in microelectronics. The X-ray photon energy will be high enough to overcome sample preparation issues of currently available commercial systems. A complete instrument will be built-up and used for application tests within three years. It will make use of a novel scintillation detector and X-ray camera system that will be prepared within the project by Crytur. The second objective encompasses development of correlative methods for tomographic analysis of structures. In particular, workflow integration and evaluation of materials and structures in microelectronics will be the key topic. The project will promote collaboration among partners. The result enables the creation of a tomographic system (AXT) and methods for defect inspection in microelectronic components.

Estimating the energy balance over forests including advection and horizontal flux divergence

Das Projekt "Estimating the energy balance over forests including advection and horizontal flux divergence" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Bereich Bau und Umwelt, Fachrichtung Hydrowissenschaften , Institut für Hydrologie und Meteorologie, Professur für Meteorologie durchgeführt. One unsolved problem of the micrometeorological community is the unclosed energy balance when its components are independently measured in the field. This so-called energy balance closure gap was investigated with focus on sinks and sources (storage change terms) and on the uncertainties involved in the estimation of the available energy. The second main topic was the assessment of the non-turbulent fluxes of sensible heat and latent heat as well as the horizontal turbulent flux in case of sensible heat. These fluxes are commonly neglected as their assessment is difficult. The third main point was the comparison of advective fluxes of sensible heat and carbon dioxide with the aim to facilitate an easier assessment of the advective fluxes of carbon dioxide. Analyses were based on the ADVEX- and the MORE II-dataset. For the investigated sites it could be shown that the energy balance closure improved when the storage terms were carefully considered. An inspection of the uncertainties involved in the available energy revealed that these uncertainties cannot explain the lack of energy balance closure alone. An inclusion of the non-turbulent advective fluxes of latent heat and sensible heat changed the corresponding budgets and improved the energy balance closure partly. However, residuals did not vanish. The horizontal turbulent flux divergence of sensible heat turned out to be negligible for the investigated site and time period. The comparison of the non-turbulent advective fluxes of sensible heat and carbon dioxide showed that advective fluxes of both scalars are larger during night than during day and that they both share a considerable scatter. On a mean diurnal basis, the advective fluxes of sensible heat and carbon dioxide turned out to be of opposite sign especially during night.

Teilvorhaben A

Das Projekt "Teilvorhaben A" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Keramische Technologien und Systeme, Institutsteil Dresden-Klotzsche durchgeführt. Ziel des geplanten Verbundvorhabens ist ein neues Forschungs- und Entwicklungsgebiet in den jeweiligen Clustern / Organisationen sowohl auf deutscher als auch auf tschechischer Seite. Ideen des Hauptthemas diese Antrags, d.h. hauptsächlich die Kombination von fortgeschrittenen Röntgen- und Elektroneninspektionstechniken, wurden bereits für einige Jahre diskutiert, bisher aber ohne ein finanziertes Projekt zu starten. Daher stellen die Internationalisierungspläne von Cool Silicon e. V. eine einzigartige Möglichkeit dar, ein solch ehrgeiziges Projekt durchzuführen. Das Projekt verfolgt zwei Ziele. Das erste Ziel ist die Entwicklung eines fortschrittlichen Nano-Röntgen-Computertomographie-Inspektionssystems (engl. advanced nano X-ray computer tomography inspection system, AXT) mit einer exzellenten räumlichen Auflösung von weniger als 100 nm und für Anwendungen in der Mikroelektronik. Die Röntgenphotonenenergie wird hoch genug gewählt, um Einschränkungen durch Probenvorbereitung bei derzeit verfügbaren kommerziellen Systemen zu überwinden. Ein kompletter Prototyp wird aufgebaut und innerhalb von drei Jahren für Anwendungstests verwendet. Das System wird einen neuartigen Szintillationsdetektor und ein Röntgenkamerasystem verwenden, das im Rahmen des Projekts von Crytur erstellt wird. Das zweite Ziel umfasst die Entwicklung von korrelativen Methoden zur tomographischen Analyse von Strukturen. Insbesondere die Workflow-Integration und die Evaluierung von Materialien und Strukturen der Mikroelektronik (MEMS) werden das zentrale Thema sein. Das Projekt wird die Zusammenarbeit zwischen Partnern fördern. Das Ergebnis ermöglicht die Erstellung eines tomographischen Systems und Methoden zur Defektkontrolle in mikroelektronischen Bauteilen.

Integrated High Resolution Imaging Ground Penetrating Radar and Decision Support System for WATER PIPEline Rehabilitation (WATERPIPE)

Das Projekt "Integrated High Resolution Imaging Ground Penetrating Radar and Decision Support System for WATER PIPEline Rehabilitation (WATERPIPE)" wird vom Umweltbundesamt gefördert und von RISA Sicherheitsanalysen GmbH durchgeführt. Many EU cities are experiencing increasing problems with their water pipeline infrastructure. The cost of replacing these old, worn-out systems, if left to deteriorate beyond repair, is astronomical and clearly beyond the resources of many communities. Replacement, however, is not the only choice as many of these systems can be rehabilitated at 30 to 70 percent of the cost of replacement. Accordingly, resources are now increasingly being allocated to address pipeline rehabilitation management issues. Due to the emphasis on sustainable management, risk-based approaches for the rehabilitation management of the water supply network need to be developed. Rehabilitation decisions should be based, inter alia, on inspection and evaluation of the pipeline conditions. Yet, utilities cannot locate a number of their old pipes and current inspection technologies typically do not provide the needed detailed information on pipeline damage. The objectives of this work are: 1. To develop a novel, high resolution imaging ground penetrating radar for the detection of pipes, leaks and damages and the imaging of the damaged region and evaluate it at a test site. 2. To produce an integrated system that will contain the equipment in 1 and a Decision-Support-System (DSS) for the rehabilitation management of the underground water pipelines that will use input from the inspections to assess, probabilistically, the time-dependent leakage and structural reliability of the pipelines and a risk-based methodology for rehabilitation decisions that considers the overall risk, including financial, social and environmental criteria. 3. To field test the equipment and the DSS. Prime Contractor: Institute of Communication and Computer Systems, Athen, Greece.

Qualifizierung des Elektronenstrahlschweißens im Dickblechbereich für Anwendungen im Windenergieanlagenbau

Das Projekt "Qualifizierung des Elektronenstrahlschweißens im Dickblechbereich für Anwendungen im Windenergieanlagenbau" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Eisenhüttenkunde - IEHK durchgeführt. Due to ecological reasons and because of the need to remain independent from foreign energy suppliers, the power generation in offshore wind parks becomes more and more important in Germany. It is therefore planned to build up approximately 1,300 new offshore wind power plants with a capacity of 6,500 MW near the German coastline until 2020. The structures are installed on the ground of the sea in a water depth that might in some cases reach 50 m. The mechanical loading situation for these structures is characterised by an enormous weight combined with high cyclic stresses resulting from the service loads and the tide. Hence, hot rolled steels with a yield strength of 355 MPa are employed in a maximum thickness of 100 mm. Until now, the required toughness properties for these structural steels and their welds are 40 J at -20 C. However, in a plate thickness of 100 mm, only the submerged arc welding (SAW) process can be used to guarantee such toughness properties, but especially in these heavy plates, submerged arc welding is rather time consuming and consequently more uneconomic compared to other welding techniques. Due to these disadvantages, it can even be expected that only part of the planned power plants will be built up in time as the high welding time of several hours per m causes too many delays. From the point of structural integrity, it can be argued wether a Charpy impact toughness of 40 J is really required, as this criterion is only set based on experiences of mechanical and civil engineers. Thus, it can be concluded that different welding techniques should be regarded as alternatives to SAW in case that the 'real' toughness requirements are less than 40 J at -20 C. Electron beam welding would be a favourable welding process for such heavy plates as even 100 m thick plates can be welded in one single step, but until now the toughness requirements of 40 J have not yet been met. It is therefore the aim of the research project to reinforce the electron beam welding process for the application to heavy plates in offshore wind power plants. To reach this aim, the following tasks are be carried out: - improvement of the electron beam welding process in order to achieve better toughness properties of the welds, - application of reliable fracture mechanics concepts in order to calculate realisitc toughness requirements. With regard to the process, already a this stage of the project an enormous improvement of the toughness properties of EB weld seams could be demonstrated based on optimisation of the welding process. Furthermore, it could be shown that by establishing the leakage before breakage criterion combined with regular inspections, the toughness requirements can be significantly reduced. Thus, the EB welding can be applied to offshore wind energy installations even if steels of higher yield strength (e.g. S460Q) are selected.

1 2 3