Das Projekt "Teilprojekt 1: Karlsruher Institut für Technologie" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung (INE) durchgeführt. In diesem Projekt werden relevante geochemische Aspekte der Rückhaltung von Actiniden sowohl im Tongestein als auch in Salzformationen betrachtet. Grundwässer mit hohen Salzgehalten werden sowohl im Aquifer eines Salzstocks als auch in einer Tonformation gefunden. Mit diesem Hintergrund werden die Schwerpunkte des neuen Projekts auf Untersuchungen der Sorption, Diffusion, Komplexierung und Redoxprozesse von Actiniden bei höheren Ionenstärken und Temperaturen gelegt. Zusätzlich werden Aspekte des Einflusses von Tonorganik (nieder-und makromolekular) und Behälterkorrosionsprodukten auf die Rückhaltung mit einbezogen. Die folgenden Arbeitspakete werden bearbeitet: AP1. Sorptionsuntersuchungen von Cm/Eu und Np/Pu an Opalinuston und Illit. AP2. Diffusionsuntersuchungen von Cm/Eu an kompaktierten Illit und Einfluss hoher Ionenstärken. AP3. Komplexierung von Np(V) mit Propionat, Lactat, Kerogen und Huminstoffen als Funktion der Temperatur (bis 90 Grad Celsius) und Ionenstärke. AP4. Begleitende Redoxreaktionen von Np/Pu mit Ton und Tonorganik. AP5. Stabilität der Tonorganik-Kolloide als Funktion der Ionenstärke. AP6. Einfluss der Boratkomplexierung auf die Löslichkeit von Am/Cm/Eund AP7. Daten für THEREDA aufstellen. Die Untersuchungen werden mit spektroskopische Methoden wie TRLFS, EXAFS, XPS, UV-Vis, und chemischen/elektrochemischen Methoden wie Lösungsmittelextraktion, Kapillarelektrophorese, und physikalische Methoden wie Ultrafiltration und Ultrazentrifugation durchgeführt.
Das Projekt "Teilprojekt A 3: Stoffliche Veraenderungen im Mikro- und Submikrobereich von Mineralkoernern und Bildung neuer Phasen bei der Verwitterung" wird vom Umweltbundesamt gefördert und von Universität Göttingen, Institut für Geologie und Dynamik der Lithosphäre durchgeführt. Die Verwitterung von Mineralen, die Akkumulation organischen Materials und Transportprozesse im Zusammenwirken mit Pflanzen und Bodenleben sind zentrale Parameter der Bodenbildung. Eine Matrix aus feinst- bis nicht-kristallinen Phasen (Oxidhydroxide von Mn, Fe und Al und schlechtkristalline silikatische Neubildungen, haeufig Gele), Tonmineralen und organischen Stoffen, der pH-Wert, das Bodenleben und die Porositaet bestimmen die Bodenfruchtbarkeit, die Eigenschaften des Bodens fuer die Fixierung von Schadstoffen sowie die Qualitaet von Grund- und Oberflaechenwasser. Die komplexe Grenzschicht Mineral-Loesung-Organismus-Luft wurde in zwei ausgewaehlten Verwitterungsprofilen (Loess-Parabraunerde und loessbeeinflusste podsolige Braunerde) mit pauschalchemischen und submikroskopisch aufloesenden Verfahren untersucht, um hochaufgeloeste Informationen zu grundlegenden Mechanismen von Verwitterung und Bodenbildung in unserem Klima zu erhalten. Die Gesamtgehalte an Ca, Na, P und Sr nehmen von der Karbonatgrenze im Loess bei 270 cm nach oben ab, was auf die Verringerung der Apatit- und Plagioklasanteile mit zunehmender Verwitterung hinweist. Im Loessprofil ist die tonangereicherte Matrix zwischen den Mineralkoernern, die sich aus primaer angelieferten Tonmineralen sowie mechanischen und chemischen Verwitterungsprodukten zusammensetzt, gegenueber der Pauschalzusammensetzung stark an Si verarmt und an K, Al, Mg und Fe angereichert (Elektronenstrahl-Mikrosonden-Daten). Ursache ist die Hauptkomponente Illit, die mit Fe-Oxidhydroxiden eng verwachsen ist. Da ein Trend einer systematischen K-Verarmung im Zwischenmittel relativ zu Al im gesamten Verwitterungsprofil nicht festzustellen ist, kann in den letzten 10000 Jahren nicht von einer merklichen Bildung basenaermerer Degradationsprodukte ausgegangen werden. Bei der Faellung von Fe-Oxidhydroxiden werden etwa 20 Mol-Prozent Al in deren Struktur integriert. Diese hohe Al-Anreicherung weist auf durch die Versauerung stark erhoehten Al-Gehalte in der Bodenloesung hin.