API src

Found 140 results.

Related terms

Grenzüberschreitende Abfallverbringung (Import/Export) entsprechend EG-Verordnung 259/93 (StALU MS Neubrandenburg)

Abfallverbringung aus dem Ausland nach Deutschland und von Deutschland ins Ausland unter Berücksichtigung der Einstufung des Abfalls nach EG-Verordnung 259/93.

Market analysis on import, quality and use in Germany of seeds treated in the European Union

In Deutschland darf aus der EU importiertes gebeiztes Saatgut ausgebracht werden, selbst wenn es mit Pflanzenschutzmitteln behandelt ist, welche keine Zulassung in Deutschland besitzen. Aus diesem möglichen Defizit im EU Recht, welches zum Zeitpunkt der Verhandlungen zur Pflanzenschutzmittel Verordnung nicht abschätzbar war, ergibt sich eine Lücke in der aktuellen Umweltrisikobewertung und Risikominimierung von Saatgutbeizen: Es ist weder möglich, die spezifischen Risiken für die Umwelt durch die Ausbringung von gebeiztem Saatgut in Deutschland abzuschätzen, noch geeignete Risikominderungsmaßnahmen festzulegen. Ziel dieser Marktstudie ist, Gründe für den Import und die Verwendung von gebeiztem Saatgut zu beleuchten und Informationen bezüglich der Menge und eingesetzten Pflanzenschutzmitteln zu geben. Die Erkenntnisse des Gutachtens sollen potenzielle, bisher noch nicht bei der Risikobewertung von Saatgutbeizen berücksichtigte Risiken für die Umwelt identifizieren, die durch die Ausbringung von importiertem gebeiztem Saatgut spezifisch für den Naturhaushalt in Deutschland entstehen können. Darauf basierend sollen mögliche Ansätze für die Risikobewertung und Risikominimierung von gebeiztem Saatgut auf regulatorischer Ebene erarbeitet werden. Quelle: Forschungsbericht

Mengenströme Abfallverbringung

Auswertung notifizierungspflichtiger, grenzüberschreitend verbrachter Abfälle und entsprechender Mengenströme. Datengrundlage sind die Begleitformulare aus dem Notifizierungsverfahren. Mittels dieser Daten können z.B. länderbezogene Übersichten erstellt werden. So kann beispielsweise der Im- und Export von Abfällen aus Frankreich oder Italien (oder jedes andere Land) von und nach Mecklenburg-Vorpommern, aufgeschlüsselt nach Abfallarten, dargestellt werden.

Teil 6

Das Projekt "Teil 6" wird vom Umweltbundesamt gefördert und von Stadtwerke Karlsruhe Netze GmbH durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

Teil 1

Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von DVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Instituts für Technologie (KIT) durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

Teil 5

Das Projekt "Teil 5" wird vom Umweltbundesamt gefördert und von Hochschule Biberach, Institut für Gebäude- und Energiesysteme durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

Teil 4

Das Projekt "Teil 4" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für System- und Innovationsforschung durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

Teil 3

Das Projekt "Teil 3" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Elektroenergiesysteme und Hochspannungstechnik durchgeführt. Baden-Württemberg hat die Kernziele formuliert, die Treibhausgas-Emissionen um 90 % bis 2050 mit Basis 1990 zu reduzieren. Dieses Ziel soll im Wesentlichen durch die zwei Maß- nahmen 'Verbrauchseinsparung' (50 % Reduktion des Endenergiebedarfs gegenüber 2010) und 'Erzeugung erneuerbarer Energien' (80 % des gesamten Endenergieverbrauchs) erreicht werden. Bei der Maßnahme 'Verbrauchseinsparung' werden große Möglichkeiten bei der Einsparung beim Wärmebedarf und in der Mobilität gesehen. Der hohe angestrebte Anteil an erneuerbarer Energie bedeutet, dass in allen Sektoren eine Umstellung auf regenerative Energien stattfinden muss. Hierbei werden die Bruttostromerzeugung mit Wind und Sonne in Baden- Württemberg sowie der Import von EE-Strom deutlich an Bedeutung gewinnen. 2016 basierte die Stromerzeugung in Baden-Württemberg mit 44,1 % auf Atomkraftwerken und 36,8 % auf Kohlekraftwerken überwiegend auf konventionellen Energiequellen (2). Aus heutigen Erfahrungen von Regionen in Deutschland und Baden-Württemberg führen allerdings bei einer Umstellung auf regenerative Stromerzeugung die hohe zeitliche Volatilität bei der Windenergie und der Photovoltaik (insbesondere im Binnenland) und eine hohe dezentrale Verteilung (Photovoltaik und kleine Windparks) der regenerativen Stromerzeugung zu einer zunehmenden zeitlichen und räumlichen Entkopplung von Stromerzeugung und -verbrauch. Die dadurch entstehende Diskrepanz zwischen Angebot und Nachfrage kann durch mehrere integrative technische Ansätze, z. B. Energieumwandlung, Stunden- bis saisonale Speicherung (zentral: Power to Gas - PtG und Pumpspeicherkraftwerke oder dezentral: flüssiges Biogas - LBG, Redox-Flow-Batterien, Fahrzeuge usw.), Warmwasser für Wärmenetze, Netzausbau, Lastverschiebung und Flexibilisierung der Stromerzeugung z. B. durch Bio- und Erdgas-KWK-Technologie ausgeglichen werden. Dabei ist davon auszugehen, dass das Potenzial eines einzelnen Lösungsansatzes nicht ausreichend ist, um die Versorgungssicherheit in Baden-Württemberg in Zukunft zu gewährleisten. Hierbei muss die Stromnetzstabilität bzgl. Frequenz und Spannung und Verluste beim Transport über weite Strecken beachtet werden, so dass eventuell die Nutzung von Gas für einen Teil der Stromversorgung sinnvoll sein kann. Zusätzlich kann es in der Übergangszeit zu einer Welt mit einer CO2-Einsparung von über 90 % gegenüber 1990 sinnvoll sein den regenerativen Strom zuerst in stark CO2-emittierende Sektoren (z. B. Mobilität) in Form von Gas (H2, CNG, LNG oder LBG) einzusetzen. In dieser Arbeit wurden daher die verschiedenen Ansätze für Baden-Württemberg- repräsentative Modellstandorte (z. B. ländliche Gebiete, Städte) betrachtet. Hierzu wird das Projekt in 7 Teilprojekte gegliedert, deren Verknüpfung in Abb. 2-1 dargestellt ist. (Text gekürzt)

Teilvorhaben der ELAFLEX HIBY GmbH & Co. KG: TV CF10_2.4 Schlauch- und Kupplungssystem

Das Projekt "Teilvorhaben der ELAFLEX HIBY GmbH & Co. KG: TV CF10_2.4 Schlauch- und Kupplungssystem" wird vom Umweltbundesamt gefördert und von ELAFLEX HIBY GmbH & Co. KG durchgeführt. Das Umsetzungsprojekt CAMPFIRE bündelt Forschungs- und Entwicklungsaktivitäten für die Umsetzung der gesamten Transportkette für grünes NH3 am Standort Energiehafen Rostock-Poppendorf in der Region Nord-Ost. Ziel ist die Nutzbarmachung der Vorteile des wirtschaftlichen Wasserstoffträgers Ammoniak. Neben Logistikstrukturen für den Ammoniak-Import und den Betrieb von Schiffen werden Lösungen für die Versorgungssicherheit durch regionale Erzeugung und Speicherung, dynamische Wandlungstechnologien für die stationäre und mobile Energieversorgung sowie die Versorgung von Tankstellen und Leitungen entwickelt. Des Weiteren werden sichere Lösungen für die wirtschaftliche Distribution von Ammoniak im industriellen Umfeld erschaffen. Ein Baustein des Umsetzungsprojekts bildet die Versorgung von Schiffen mit Ammoniak als Kraftstoff. In diesem Kontext besteht das übergreifende Ziel des Teilprojektes 'CF10-2 Flexible NH3-Betankungsanlage' darin, Lösungen für die Betankung der Schiffe von einem Bunkerschiff (Ship-to-Ship Bebunkerung) sowie mittels eines Containermoduls (Truck-to-Ship) zu erarbeiten. Das Teilvorhaben 'CF10-2.4 Schlauch- und Kupplungssystem' der ELAFLEX HIBY GmbH & Co. KG behandelt die Entwicklung der Komponenten in der Schnittstelle zwischen einem Bunkerschiffs- oder landseitigen Tank und dem Treibstofftank an Bord der mit Ammoniak betriebenen Schiffe.

TV: Stoffliche Analyse des Wertstoffpotentials d. Senken RA, GA u.LVP hins. d. sek. Res. 'Papier', ökol. Bewert. d. Prozessk.

Das Projekt "TV: Stoffliche Analyse des Wertstoffpotentials d. Senken RA, GA u.LVP hins. d. sek. Res. 'Papier', ökol. Bewert. d. Prozessk." wird vom Umweltbundesamt gefördert und von Rheinisch-Westfälische Technische Hochschule Aachen University, Institut und Lehrstuhl für Anthropogene Stoffkreisläufe durchgeführt. Mit über 330.000 TJ/a entspricht der Primärenergieverbrauch der deutschen Papierindustrie dem Verbrauch von rund fünf Millionen deutschen Haushalten. In den vergangenen Jahrzehnten konnte dieser Verbrauch, neben technischen Optimierungen von Anlagen, auch durch die Wiederaufbereitung von Altpapier aus privaten und gewerblichen Abfallströmen gesenkt werden. So stellt der Einsatz von Fasern aus Altpapier als Sekundärrohstoff heute eine wichtige Basis für die Papierproduktion dar. Dennoch gelangen derzeit noch rund 20 % des produzierten Papiers nicht zurück in den Altpapierwertstoffstrom und werden thermisch verwertet. Um die angestrebte Recyclingquote von 90 % für PPK-Verpackungen im Jahr 2025 erzielen und den Primärenergieverbrauch und die Treibhausgas-Emissionen weiter senken zu können, ist es daher erforderlich, eine Möglichkeit der Aufbereitung von Altpapier aus anderen Abfallströmen, wie beispielsweise Leichtverpackungen, Restabfällen und Gewerbeabfällen, zu erschließen. Dieses zusätzliche Sekundärfasermaterial kann dann dazu genutzt werden weitere energieintensive Primärfasern in der Papierproduktion zu ersetzten und den Import von Altpapier zu reduzieren. Das Forschungsvorhaben EnEWA entwickelt hierzu einen Aufbereitungsprozess von der trockenmechanischen Sortierung, Zerfaserung und Hygienisierung bis hin zum Einsatz in der stofflichen Verwertung. Auf Basis der Projektergebnisse soll abschließend eine Empfehlung zur Weiterentwicklung der XXXVI.-Empfehlung des Bundesinstituts für Risikoabschätzung abgegeben werden, um die entwickelte Lösung nach Projektabschluss in eine wirtschaftliche Nutzung überführen zu können.

1 2 3 4 512 13 14