Die wichtigsten Fakten Stromerzeugung, Wärmeerzeugung und Verkehrsaktivitäten belasten die Umwelt u.a. durch den Ausstoß von Treibhausgasen und Luftschadstoffen stark. Dadurch entstehen hohe Folgekosten für die Gesellschaft, etwa durch umweltbedingte Erkrankungen, Schäden an Ökosystemen oder auch an Gebäuden und die Zunahme von Extremwetterereignissen. Für Deutschland schätzen wir die Höhe dieser Umweltkosten im Jahr 2022 auf rund 301 Milliarden Euro. Das ist eine Abnahme von 3,3 % im Vergleich zu 2021. Welche Bedeutung hat der Indikator? Die Nutzung und Umwandlung von Energierohstoffen zur Strom- und Wärmeerzeugung sowie für den Straßenverkehr belasten die Umwelt durch die Emission von Treibhausgasen und Luftschadstoffen wie Feinstaub und Stickoxide. Diese verursachen eine Zunahme von Erkrankungen, Schäden an Gebäuden sowie Denkmälern (Fassadenverschmutzung), belasten die Ökosysteme (siehe Indikatoren „Belastung der Bevölkerung durch Feinstaub“ und „Eutrophierung durch Stickstoff“ ) und tragen zum Klimawandel bei. Die Folgen des Klimawandels wie zunehmender Starkregen , Unwetter oder Überschwemmungen bedrohen Menschenleben und verursachen schwere Schäden. Damit sind auch wirtschaftliche Kosten in Milliardenhöhe verbunden, etwa Aufwendungen für die Beseitigung von Unwetterschäden. Auch fünfzehn Jahre nach Erscheinen des „Stern Reviews“, bekräftigt der Ökonom Nicholas Stern, dass die Kosten des Nichthandelns die Kosten des Klimaschutzes um ein Vielfaches übersteigen und ruft erneut zu entschiedenem Handeln im Kampf gegen den Klimawandel auf (Stern 2006 und Stern 2021 ). Wie ist die Entwicklung zu bewerten? Nachdem die Umweltkosten aus Energie und Straßenverkehr von 2020 auf 2021 um 6 % anstiegen, sanken diese zwischen 2021 und 2022 um 3,3 % und lagen im Jahr 2022 bei 301,1 Mrd. Euro. Diese Entwicklung ergibt sich aus einem Rückgang um 6,2 % bei der Stromerzeugung sowie um 6,9 % bei der Wärmeerzeugung. Diesem rückläufigen Trend bei der Wärme- und Stromerzeugung steht eine Zunahme um 3,3 % bei den Umweltkosten des Straßenverkehrs gegenüber. Im Saldo ergibt sich damit ein Minus von 3,3 % bei den Gesamt-Umweltkosten aus Energie- und Straßenverkehr. Ausschlaggebend für die gesunkenen Umweltkosten ist der niedrige Endenergieverbrauch : Der Endenergieverbrauch 2022 war der zweitniedrigste seit 1990 , lediglich im Pandemiejahr 2020 war dieser noch geringer. Wie wird der Indikator berechnet? Die Berechnungen erfolgen auf Basis der Arbeiten zur „ Methodenkonvention 3.1 – Kostensätze “ sowie zur „ Methodological Convention 3.2 for the Assessment of Environmental Costs “ (derzeit nur in englischer Sprache verfügbar). Letztere stellt dabei eine Teilaktualisierung der „Methodenkonvention 3.1 – Kostensätze“ dar, im Zuge derer die für diesen Indikator relevanten Kapitel zu Treibhausgasemissionen und Luftschadstoffen überarbeitet wurden. Die Schätzungen zu den Umweltkosten von Treibhausgasemissionen basieren auf einem neuen Modell, dem Greenhouse Gas Impact Value Estimator (GIVE) Modell. Dieses stellt eine Weiterentwicklung des Vorgängermodells Climate Framework for Uncertainty, Negotiation and Distribution (FUND) dar. Beim GIVE Modell handelt es sich um ein integriertes Bewertungsmodell (Integrated Assessment Model) mit welchem neben Kostensätzen für die Emission von Kohlendioxid auch Kostensätze für die Treibhausgase Methan und Lachgas ermittelt werden können. Die neue Methodik wird für die Schätzungen ab 2020 angewendet. Zu Vergleichszwecken werden für die Jahre 2020 bis 2022 mit der gestrichelten Linie auch die auf dem FUND basierenden Umweltkosten dargestellt. Wie sich ablesen lässt, fallen die mit dem GIVE Modell ermittelten klimabezogenen Umweltkosten etwas höher aus als im FUND Modell. Ausführliche Informationen zum Thema finden Sie im Daten-Artikel "Gesellschaftliche Kosten von Umweltbelastungen" .
Das Projekt "Maintenance of the chemical indicator set 2" wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..
Das Projekt "REACH Baseline Study: improvement of the satistical coverage of the Risk and Quality indicator system" wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..
Das Projekt "AZV Project West Greenland" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft / Deutscher Akademischer Austausch Dienst. Es wird/wurde ausgeführt durch: Universität Münster, Institut für Ökologie der Pflanzen.The AZV (Altitudinal Zonation of Vegetation) Project was initiated in the year 2002. On the basis of a detailed regional study in continental West Greenland the knowledge about altitudinal vegetation zonation in the Arctic is aimed to be enhanced. The main objectives of the project are: a) considering the regional study: characterize mountain vegetation with regard to flora, vegetation types, vegetation pattern and habitat conditions, investigate the differentiation of these vegetation characteristics along the altitudinal gradient, develop concepts about altitudinal indicator values of species and plant communities, extract suitable characteristics for the distinction and delimitation of vegetation belts, assess altitudinal borderlines of vegetation belts in the study area. b) considering generalizations: test the validity of the altitudinal zonation hypothesis of the Circumpolar Arctic Vegetation Map ( CAVM Team 2003), find important determinants of altitudinal vegetation zonation in the Arctic, develop a first small scale vegetation map of entire continental West Greenland. Field work consists of vegetational surveys according to the Braun-Blanquet approach, transect studies, soil analyses, long-time-measurements of temperature on the soil surface and vegetation mapping in three different altitudinal vegetation belts (up to 1070 m a.s.l.).
Das Projekt "Umweltindikatoren für Chemikalien" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften, Statistisches Amt. Es wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..
Das Projekt "Forschergruppe (FOR) 861: Cross-scale Monitoring: Biodiversity and Ecosystem Functions, Quantification of functional hydro-biogeochemical indicators in Ecuadorian ecosystems and their reaction on global change" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement, Professur für Landschafts-, Wasser- und Stoffhaushalt.Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).
Das Projekt "Forschergruppe (FOR) 1501: Resilience, Collapse and Reorganisation in Social-Ecological Systems of East- and South Africa's Savannahs, Vulnerability and Resilience of Rangeland Vegetation as Affected by Livestock Management, Soils and Climate" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz INRES, Arbeitsgruppe Pflanzenbau.The vegetation of East and South African savannahs has been shaped by the complex interaction of geo-biophysical processes and human impact. For both regions a controversial discussion is pertinent, as to whether massive degradation threatens the sustainability of livelihoods in these regions. Rangeland vegetation is mainly affected by environmental conditions (soil and climate) and by livestock management. Extent and interaction of these drivers are not well understood but have profound impacts on the resilience and vulnerability of these systems to be shifted toward unfavourable degraded or bush encroached states. The project aims to analyse and model rangeland vegetation in response to range management including livestock, soil quality and climatic conditions and to assess the impacts of changes in these conditions on the resilience and vulnerability of rangeland systems. Field measurements, remote sensing of vegetation patterns and dynamics and simulation modelling will be used to understand the dynamics of rangeland vegetation. We will use the 'fast' or 'state' variables potential of pastures to produce palatable biomass, the variability of this production, and the system's potential to recover from disturbance impact as indicators of resilience. 'slow' variables that control (or drive) the 'fast' variables such as management, climate and soil variables are recorded in cooperation with other subprojects as with A1 for soil variables. Results of the project will show which management activities are most favourable for individual regions to sustain plant production in the long term.
Das Projekt "Stressproteine als Indikatoren des Einflusses von Schwermetallen auf Bodenorganismen" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Universität Heidelberg, Zoologisches Institut I.Induktion und Charakterisierung von Stressproteinen der hsp 70-Gruppe mittels Fluorographie in Asseln, Tausendfuessern und Landlungenschnecken nach unterschiedlichen Stressfaktoren (Hitze, Schwermetalle, Pestizide). Untersuchungen ueber die Persistenz dieser Proteine im Tierkoerper nach unterschiedlicher Vorbelastung und Stressentzug mit proteinchemischen und immunologischen Methoden. Quantifizierung der Schwermetallkonzentration als Stressfaktor. Nachweis von hsp 70 in schwermetallkontaminierten Gebieten unter Freilandbedingungen. Ermittlung geeigneter Indikatoren. Immunhistochemische Untersuchungen zur Lokalisation der Proteine im Gewebe.
Das Projekt "Monsunvariabilität in SE-China - der Huguang-Maarsee (Huguangyan)" wird/wurde gefördert durch: Chinese Academy of Sciences / GeoForschungsZentrum Potsdam. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.Südchina, insbes. die Provinz Guandong, ist eines der am dichtesten besiedelten Gebiete der Erde. Positive Konsequenz dieser Ballung ist eine äußerst dynamische Wirtschaftsentwicklung, aber gerade diese von subtropischem Monsunklima geprägte Region ist auch immer wieder Ausgangspunkt für sich schnell und zunehmend global ausbreitende epidemische Krankheiten wie zuletzt SARS. Mit der globalen Erwärmung einhergehende Klimaveränderungen könnten sich für diese Region insbesondere durch Veränderungen der Häufigkeit und Intensität tropischer Wirbelstürme, aber auch Änderungen der Niederschlagsmenge- und Intensität bemerkbar machen. Im Gegensatz zu den schon recht umfangreichen Datensätzen aus der Südchinesischen See (SCS) gibt es bisher jedoch nur sehr wenige terrestrische Paläoklimaarchive aus der Region, die Klimaveränderungen während des Holozäns, des Spätglazials oder Glazials hochauflösend dokumentieren. Wir haben deshalb einen an der nördlichen Küste der SCS gelegenen Maarsee ausgewählt, um über die Analyse von Proxydaten aus Seesedimenten solche Paläo-Klimavariationen zu untersuchen. Aus dem Sediment des Huguang-Maarsees wurden mittels Usinger-Präzisionsstechtechnik von einem Floss aus insgesamt 7 Sedimentsequenzen gewonnen, von denen die tiefste bis 57 m unter den Seeboden reicht. Die zeitliche Einstufung der Profile wurde mit Hilfe von 17 Radiokohlenstoff-Datierungen vorgenommen und ergab ein extrapoliertes Maximalalter von ca. 78.000 Jahren. Ein breites Spektrum aus sedimentologischen, geochemischen, paläo- und gesteinsmagnetischen sowie palynologischen Methoden kam sodann zum Einsatz, um die Paläo-Umweltbedingungen, die natürlich immer das entsprechende Klima widerspiegeln, während dieses Zeitraumes zu rekonstruieren. Überraschenderweise ergab sich ein von vielen bekannten Klimaprofilen der Nordhemisphäre (insbes. des Atlantikraumes, aber auch mariner Kerne aus dem Indik und Südostasien) abweichendes Muster. Im Gegensatz zu dem bekannten Grundmuster eines vergleichsweise stabilen Klimas während des Holozäns und stärkerer Schwankungen während des letzten Glazials weisen die Daten aus dem Huguang-Maarsee für das letzte Glazial im Zeitraum zwischen 15.000 und 40.000 Jahren auf relativ stabile Umweltbedingungen hin. Die älteren Bereiche zwischen 40.000 und ca. 78.000 Jahren haben durch Eintrag von umgelagertem Torf eine eher lokale Komponente und sind somit für den regionalen und globalen Vergleich ungeeignet. Das Holozän hingegen zeichnet sich durch hohe Schwankungsamplituden vieler Proxydaten (Karbonatgehalt, magnetische Suszeptibilität, organischer Kohlenstoff, Trockendichte, gesteinsmagnetische Parameter, Redox-Verhältnisse) aus, die auf ein recht variables Klima hinweisen. Besonders interessant ist die Übergangsphase vom Glazial zum Holozän, die bei etwa 15.000 Jahren vor heute in etwa zeitgleich mit dem beobachteten stärksten Meeresspiegelanstieg der Südchinesischen See einsetzt und eine abrupte Intensitätszunahme des Sommermonsuns anzeigt
Das Projekt "Schwerpunktprogramm (SPP) 1689: Climate Engineering: Risiken, Herausforderungen, Möglichkeiten?, Vergleichende Bewertung möglicher Wirkungen, Nebenwirkungen und Unsicherheiten von CE-Verfahren und Maßnahmen zur Emissionsreduktion (ComparCE-2)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.Das Hauptziel des ComparCE Projekts ist eine umfassende Einschätzung verschiedener Climate Engineering (CE) Maßnahmen gegeneinander und gegenüber Mitigationsbemühungen. Dabei sollen insbesondere Modelunsicherheiten berücksichtigt werden, da eine solche Einschätzung im CE Fall ausschließlich auf Modellsimulationen beruht. In diesem Projekt wollen wir darüber hinaus Fragen beantworten, die unserer Meinung bislang im CE Zusammenhang nicht bearbeitet wurden. Als ersten und zentralen Schritt wollen wir untersuchen welche Metriken und Indikatoren für die Beurteilung von CE Methoden, und somit für das gesamte Schwerpunkt Programm, wichtig sind und wie diese sich von den Metriken im Kontext von Klimawandel unterscheiden. Diese Art der Forschung gab es im Kontext Klimawandel bereits, sie fehlt bislang aber für CE. Durch Austausch mit internationalen Forschergruppen wurde klar, dass eine die wahrscheinlichste Implementierung von CE Maßnahmen aus einer Kombination der verschiedenen Technologien besteht. Daher wollen wir in diesem Projekt untersuchen wie das Erdsystem auf eine Kombination verschiedener CE Maßnahmen reagiert, und ob es möglich ist die Signale der einzelnen Methoden jeweils zuzuordnen. In diesem Zusammenhang werden wir ebenfalls untersuchen ob und wie die Effektivität der CE Maßnahmen vom Hintergrund-Klimazustand abhängt und ob z.B. der Zeitpunkt der Umsetzung von CE eine Rolle spielt. Darüber hinaus wollen wir robuste, regionale CE Muster untersuchen um ebenfalls auf die regionalen Auswirkungen von CE eingehen zu können. Das ist besonders wichtig, weil für die lokale Öffentlichkeit regionale Klimaextreme mehr Bedeutung haben als globale Mittelwerte. Diese Analysen werden ebenfalls den Findungsprozess der Metriken informieren. Zusätzlich wird die plötzliche Terminierung von CE Maßnahmen im Kontext der Geschwindigkeit des Terminations-Schocks untersucht. Schlussendlich basiert die gesamte Beurteilung von CE Maßnahmen auf Modellergebnissen, daher finden wir, dass ein wichtiger Beitrag für die CE Debatte eine Beurteilung der model-internen Unsicherheiten ist. Diese werden mit Anhang von Änderungen der Wahrscheinlichkeitsverteilung von Metriken quantifiziert, so können zum Beispiel aussagen über die Wahrscheinlichkeit einer Richtwert-Überschreitung der gegebenen Zukunftsszenarien getroffen werden. Die Ergebnisse diese Projekts erlauben eine umfassende Einschätzung der untersuchten CE Maßnahmen gegenüber Migration, unter Berücksichtigung von Unsicherheiten in Modellen, den Zukunftsszenarien und Metriken, welche im Laufe des Projekts iterative mit anderen Teilprojekten diskutiert werden.
Origin | Count |
---|---|
Bund | 305 |
Land | 11 |
Schutzgebiete | 1 |
Wissenschaft | 8 |
Type | Count |
---|---|
Förderprogramm | 224 |
Text | 52 |
unbekannt | 38 |
License | Count |
---|---|
geschlossen | 76 |
offen | 235 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 201 |
Englisch | 193 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 1 |
Datei | 49 |
Dokument | 48 |
Keine | 197 |
Webdienst | 8 |
Webseite | 114 |
Topic | Count |
---|---|
Boden | 251 |
Lebewesen & Lebensräume | 273 |
Luft | 199 |
Mensch & Umwelt | 314 |
Wasser | 201 |
Weitere | 309 |